HALF-GRABEN MODEL FOR THE STRUCTURAL EVOLUTION OF THE FITZROY TROUGH, CANNING BASIN, AND IMPLICATIONS FOR RESOURCE EXPLORATION

1988 ◽  
Vol 28 (1) ◽  
pp. 76 ◽  
Author(s):  
B.J. Drummond ◽  
M.A. Etheridge ◽  
P.J. Davies ◽  
M.F. Middleton

The Fitzroy Trough is a north-west/south-east trending rift along the north-east margin of the Canning Basin. The major crustal extension in the trough occurred in the Middle Devonian to Early Carboniferous. Most idealised cross-sections show down-to-trough normal faults bounding both sides of the trough. In contrast, we show the trough to have a half- graben style, with one side a hinge zone or flexure, and the other side bounded by normal faults. Thus, the basin has marked structural asymmetry. The sense of asymmetry switches several times along strike with the hinged margin on the north-eastern margin in some places and the south-west margin in others. The switching in asymmetry occurs at transfer faults. This structural style is expected in extensional tectonic models where the extension occurs on a detachment surface and is typical of many continental and passive margin rifts. The asymmetry of the Palaeozoic structure has implications for resource exploration because of its influence on facies development in and subsequent structural evolution of the trough. Quite different syn-rift clastic and carbonate facies are expected on faulted and hinged margins of a half-graben. Post-rift subsidence will also be somewhat asymmetric, influencing the carbonate reef geometry in particular. Mesozoic deformation in the basin reactivated many of the Palaeozoic normal and transfer faults, and induced reverse slip up basement surfaces on the hinged margin segments.

2019 ◽  
Vol 7 (4) ◽  
pp. SH19-SH31
Author(s):  
Gabriela Salomão Martins ◽  
Webster Ueipass Mohriak ◽  
Nivaldo Destro

The Sergipe-Alagoas Basin, situated in the north-east Brazilian margin, has a long tradition of oil and gas production and the presence and distribution of evaporites play an important role in petroleum systems in the basin. However, little research has focused on the structural evolution of the older, synrift evaporitic sections of the basin. We have focused explicitly in the detailed subsurface structural characterization of the rift in the Alagoas subbasin and the distribution of the Early Aptian evaporites. To accomplish this objective, we interpreted selected 2D and 3D seismic and well data located in two areas known as the Varela Low (VL) and Fazenda Guindaste Low (FGL). We identified diverse deformation styles in those two basin depocenters. Our interpretation indicates that VL consists of a half-graben with a significant rollover structure, controlled by two listric northeast–southwest border faults. The deformation in the hanging wall is also accommodated by release faults and minor antithetic faults. In this depocenter, we mapped in the seismic and the well data an older evaporitic sequence within the Coqueiro Seco Fm., known as Horizonte Salt. This evaporitic section occurs in the internal part of the VL half graben, where it is limited by release and antithetic faults. Significant salt strata growing toward the antithetic fault is observed. Whereas, the FGL represents a graben elongated along the north-east direction and is controlled by several types of structures. We recognized normal synthetic and antithetic faults, transfer zones, release faults, and rollover anticlines in the seismic throughout this depocenter. We mapped an evaporitic section within the Maceió Fm., known as Paripueira Salt, which consists of disconnected salt bodies, restricted to the hanging walls of synrift faults.


1989 ◽  
Vol 29 (2) ◽  
pp. 99
Author(s):  
M. A. Etheridge ◽  
P. A. Symonds ◽  
T. G. Powell

The extension of the continental lithosphere that gives rise to continental rifts and eventually to passive continental margins and their basins is considered generally to involve shear on one or more major, shallow dipping normal faults (detachments). The operation of these detachments induces a basic asymmetry into the extensional terrane that is analogous to that in thrust terranes. As a result, the two sides of a continental rift and conjugate passive margin segments are predicted to have contrasting structure, facies development, subsidence history and thermal evolution.The major structural consequence of the detachment model is that half- graben rather than full graben geometry is expected in rift basins, consistent with recent interpretations in a wide range of continental rifts and passive margins. Half- graben geometry dominates in the Bass Strait basins, the Canning Basin and in a number of Proterozoic rifts, and has been observed on most parts of the Australian continental margin. Variations in the along- strike geometry of extensional basins are accommodated by transfer faults or fault zones. Transfer faults are as important and widespread in rifts as the classical normal faults, and they have important consequences for hydrocarbon exploration (e.g. design of seismic surveys, structural interpretation of seismic data, play and lead development).The fundamental asymmetry of extensional basins, and their compartmentalisation by transfer faults also control to a large extent the distribution of both source and reservoir facies. A model for facies distribution in a typical rift basin is presented, together with its implications for the prime locations of juxtaposed sources and reservoirs. Maturation of syn- rift source rocks depends on both the regional heat flow history and the amount of post- rift subsidence (and therefore burial). Both of these factors are influenced, and are partly predictable by the detachment model. In particular, there may be substantial horizontal offset of both the maximum thermal anomaly and the locus of post- rift subsidence from the rift basin. Analysis of deep crustal geophysical data may aid in the interpretation of detachment geometry and, therefore, of the gross distribution of thermal and subsidence histories.


1988 ◽  
Vol 28 (1) ◽  
pp. 167 ◽  
Author(s):  
M.A. Etheridge ◽  
P.A. Symonds ◽  
T.G. Powell

The extension of the continental lithosphere that gives rise to continental rifts and eventually to passive continental margins and their basins is considered generally to involve shear on one or more major, shallow dipping normal faults (detachments). The operation of these detachments induces a basic asymmetry into the extensional terrane that is analogous to that in thrust terranes. As a result, the two sides of a continental rift and conjugate passive margin segments are predicted to have contrasting structure, facies development, subsidence history and thermal evolution.The major structural consequence of the detachment model is that half-graben rather than full graben geometry is expected in rift basins, consistent with recent interpretations in a wide range of continental rifts and passive margins. Half-graben geometry dominates in the Bass Strait basins, the Canning Basin and in a number of Proterozoic rifts, and has been observed on most parts of the Australian continental margin. Variations in the along-strike geometry of extensional basins are accommodated by transfer faults or fault zones. Transfer faults are as important and widespread in rifts as the classical normal faults, and they have important consequences for hydrocarbon exploration (e.g. design of seismic surveys, structural interpretation of seismic data, play and leav development).The fundam* nal asymmetry of extensional basins, and their compartmentalisation by transfer faults also control to a large extent the distribution of both source and reservoir facies. A model for facies distribution in a typical rift basin is presented, together with its implications for the prime locations of juxtaposed sources and reservoirs. Maturation of synrift source rocks depends on both the regional heat flow history and the amount of post-rift subsidence (and therefore burial). Both of these factors are influenced, and are partly predictable by the detachment model. In particular, there may be substantial horizontal offset of both the maximum thermal anomaly and the locus of post-rift subsidence from the rift basin. Analysis of deep crustal geophysical data may aid in the interpretation of detachment geometry and, therefore, of the gross distribution of thermal and subsidence histories.


2021 ◽  
Author(s):  
Wajdi Belkhiria ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
Adnen Amiri ◽  
Mohamed Hédi Inoubli

<p>The Sahel basin in eastern Tunisia has been subject for hydrocarbon exploration since the early fifties. Despite the presence of a working petroleum system in the area, most of the drilled wells were dry or encountered oil shows that failed to give commercial flow rates. A better understanding of the tectono-sedimentary evolution of the Sahel basin is of great importance for future hydrocarbon prospectivity. In this contribution, we present integration of 2D seismic reflection profiles, exploration wells and new acquired gravity data. These subsurface data reveal that the Sahel basin developed as a passive margin during Jurassic-Early Cretaceous times and was later inverted during the Cenozoic Alpine orogeny. The occurrence of Triassic age evaporites and shales deposited during the Pangea breakup played a fundamental role in the structural style and tectono-sedimentary evolution of the study area. Seismic and gravity data revealed jointly important deep-seated extensional faults, almost along E-W and few along NNE–SSW and NW-SE directions, delimiting horsts and grabens structures. These syn-rift extensional faults controlled deposition, facies distribution and thicknesses of the Jurassic and Early cretaceous series. Most of these inherited deep-seated normal and transform faults are ornamented by different types of salt-related structures. The first phase of salt rising was initiated mainly along these syn-extensional faults in the Late Jurassic forming salt domes and continued into the Early and Late Cretaceous leading to salt-related diapir structures. During this period, the salt diapirism was accompanied by the development of salt withdrawal minibasins, characterized important growth strata due the differential subsidence. These areas represent important immediate kitchen areas to the salt-related structures. The later Late Cretaceous - Cenozoic shortening phases induced preferential rejuvenation of the diapiric structures and led to the inversion of former graben/half-graben structures and ultimately to vertical salt welds along salt ridges. These salt structures represent key elements that remains largely undrilled in the Sahel basin. Our results improve the understanding of salt growth in eastern Tunisia and consequently greatly impact the hydrocarbon prospectivity in the area.</p>


2018 ◽  
Vol 58 (2) ◽  
pp. 793
Author(s):  
Karen Connors ◽  
Cedric Jorand ◽  
Peter Haines ◽  
Yijie Zhan ◽  
Lynn Pryer

A new regional scale SEEBASE® model has been produced for the intracratonic Canning Basin, located in the north of Western Australia. The 2017 Canning Basin SEEBASE model is more than an order of magnitude higher resolution than the 2005 OZ SEEBASE version — the average resolution is ~1 : 1 M scale with higher resolution in areas of shallow basement with 2D seismic coverage — such as the Broome Platform and Barbwire Terrace. Post-2005 acquisition of potential field, seismic and well data in the Canning Basin by the Geological Survey of Western Australia (GSWA), Geoscience Australia and industry provided an excellent opportunity to upgrade the SEEBASE depth-to-basement model in 2017. The SEEBASE methodology focuses on a regional understanding of basement, using potential field data to interpret basement terranes, depth-to-basement (SEEBASE), regional structural geology and basement composition. The project involved extensive potential field processing and enhancement and compilation of a wide range of datasets. Integrated interpretation of the potential field data with seismic and well analysis has proven quite powerful and illustrates the strong basement control on the extent and location of basin elements. The project has reassessed the structural evolution of the basin, identified and mapped major structures and produced fault-event maps for key tectonic events. In addition, interpretative maps of basement terranes, depth-to-Moho, basement thickness, basement composition and total sediment thickness have been used to calculate a basin-wide map of basement-derived heat flow. The 2017 Canning Basin SEEBASE is the first public update of the widely used 2005 OZ SEEBASE. All the data and interpretations are available from the GSWA as a report and integrated ArcGIS project, which together provide an excellent summary of the key features within the Canning Basin that will aid hydrocarbon and mineral explorers in the region.


Author(s):  
Kristian Svennevig ◽  
Peter Alsen ◽  
Pierpaolo Guarnieri ◽  
Jussi Hovikoski ◽  
Bodil Wesenberg Lauridsen ◽  
...  

The geological map sheet of Kilen in 1:100 000 scale covers the south-eastern part of the Carboniferous– Palaeogene Wandel Sea Basin in eastern North Greenland. The map area is dominated by the Flade Isblink ice cap, which separates several minor isolated landmasses. On the semi-nunatak of Kilen, the map is mainly based on oblique photogrammetry and stratigraphical field work while in Erik S. Henius Land, Nordostrundingen and northern Amdrup Land the map is based on field data collected during previous, 1:500 000 scale regional mapping. Twenty-one Palaeozoic–Mesozoic mappable units were identified on Kilen, while the surrounding areas comprise the Late Cretaceous Nakkehoved Formation to the north-east and the Late Carboniferous Foldedal Formation to the south-west. On Kilen, the description of Jurassic–Cretaceous units follows a recently published lithostratigraphy. The Upper Palaeozoic–lowermost Cretaceous strata comprise seven formations and an informal mélange unit. The overlying Lower–Upper Cretaceous succession comprises the Galadriel Fjeld and Sølverbæk Formations, which are subdivided into six and five units, respectively. In addition, the Quaternary Ymer Formation was mapped on south-east Kilen. The Upper Palaeozoic to Mesozoic strata of Kilen are faulted and folded. Several post-Coniacian NNW–SSE-trending normal faults are identified and found to be passively folded by a later N–S compressional event. A prominent subhorizontal fault, the Central Detachment, separates two thrust sheets, the Kilen Thrust Sheet in the footwall and the Hondal Elv Thrust Sheet in the hanging wall. The style of deformation and the structures found on Kilen are caused by compressional tectonics resulting in post-extensional, presumably Early Eocene, folding and thrusting and basin inversion. The structural history of the surrounding areas and their relation to Kilen await further studies.


2020 ◽  
pp. geochem2020-030
Author(s):  
Dillon Johnstone ◽  
Kathryn Bethune ◽  
Colin Card ◽  
Victoria Tschirhart

The Patterson Lake corridor is situated along the southwest margin of the Athabasca Basin and contains several basement-hosted uranium deposits and prospects. Drill core investigations during this study have determined that granite, granodiorite, mafic and alkali intrusive basement rocks are entrained in a deep-seated northeast-striking subvertical heterogeneous high-strain zone defined by anastomosing ductile to semi-brittle shears and brittle faults. The earliest phases of ductile deformation (D1/2), linked with Taltson (1.94–1.92 Ga) orogenesis, involved interference between early fold sets (F1/2) and development of an associated ductile transposition foliation (S1/2). During subsequent Snowbird (ca. 1.91–1.90 Ga) tectonism, this composite foliation was re-folded (D3) by northeast-trending buckle-style folds (F3), including a regional fold centered on the Clearwater aeromagnetic high. In continuum with D3, a network of dextral-reverse chloritic-graphitic shears, with C-S geometry, formed initially (D4a) and progressed to more discrete, spaced semi-brittle structures (D4b; ca. 1.900–1.819 Ga). Basin development (D5a; <ca. 1.819 Ga) was marked by a set of north-striking normal faults and related east- and northeast-striking transfer faults that accommodated subsidence. Primary uranium mineralization (D5b; ∼1.45 Ga) was facilitated by brittle reactivation of northeast-striking basement shears in response to west-southwest - east-northeast-directed compressional stress (σ1). Uraninite was emplaced along σ1-parallel extension fractures and dilational zones formed at linkages between northeast- and east-northeast-striking dextral strike-slip faults. Uranium remobilization (D5c) occurred after σ1 shifted to west-northwest – east-southeast, giving rise to regional east- and southeast-striking conjugate faults, along which mafic dykes (1.27 Ga and 1.16 Ga) intruded.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways


Author(s):  
Kristian Svennevig ◽  
Peter Alsen ◽  
Pierpaolo Guarnieri ◽  
Jussi Hovikoski ◽  
Bodil Wesenberg Lauridsen ◽  
...  

NOTE: This Map Description was published in a former series of GEUS Bulletin. Please use the original series name when citing this series, for example: Svennevig, K., Alsen, P., Guarnieri, P., Hovikoski, J., Wesenberg Lauridsen, B., Krarup Pedersen, G., Nøhr-Hansen, H., & Sheldon, E. (2018). Descriptive text to the Geological map of Greenland, 1:100 000, Kilen 81 Ø.1 Syd. Geological Survey of Denmark and Greenland Map Series 8, 1-29. https://doi.org/10.34194/geusm.v8.4526 _______________ The geological map sheet of Kilen in 1:100 000 scale covers the south-eastern part of the Carboniferous–Palaeogene Wandel Sea Basin in eastern North Greenland. The map area is dominated by the Flade Isblink ice cap, which separates several minor isolated landmasses. On the semi-nunatak of Kilen, the map is mainly based on oblique photogrammetry and stratigraphical field work while in Erik S. Henius Land, Nordostrundingen and northern Amdrup Land the map is based on field data collected during previous, 1:500 000 scale regional mapping. Twenty-one Palaeozoic–Mesozoic mappable units were identified on Kilen, while the surrounding areas comprise the Late Cretaceous Nakkehoved Formation to the north-east and the Late Carboniferous Foldedal Formation to the south-west. On Kilen, the description of Jurassic–Cretaceous units follows a recently published lithostratigraphy. The Upper Palaeozoic–lowermost Cretaceous strata comprise seven formations and an informal mélange unit. The overlying Lower–Upper Cretaceous succession comprises the Galadriel Fjeld and Sølverbæk Formations, which are subdivided into six and five units, respectively. In addition, the Quaternary Ymer Formation was mapped on south-east Kilen. The Upper Palaeozoic to Mesozoic strata of Kilen are faulted and folded. Several post-Coniacian NNW–SSE-trending normal faults are identified and found to be passively folded by a later N–S compressional event. A prominent subhorizontal fault, the Central Detachment, separates two thrust sheets, the Kilen Thrust Sheet in the footwall and the Hondal Elv Thrust Sheet in the hanging wall. The style of deformation and the structures found on Kilen are caused by compressional tectonics resulting in post-extensional, presumably Early Eocene, folding and thrusting and basin inversion. The structural history of the surrounding areas and their relation to Kilen await further studies.


2021 ◽  
Author(s):  
Adam J. Cawood ◽  
David A. Ferrill ◽  
Alan P. Morris ◽  
David Norris ◽  
David McCallum ◽  
...  

&lt;p&gt;The Orphan Basin on the eastern edge of the Newfoundland continental margin formed as a Mesozoic rift basin prior to continental breakup associated with the opening of the North Atlantic. Few exploration wells exist in the basin, and until recently regional interpretations have been based on sparse seismic data coverage - because of this the structural evolution of the Orphan Basin has historically not been well understood. Key uncertainties include the timing and amount of rift-related extension, dominant extension directions, and the structural styles that accommodated progressive rift development in the basin. &amp;#160;&amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Interpretation of newly acquired modern broadband seismic data and structural restoration of three regional, WNW-ESE oriented cross-sections across the Orphan Basin and Flemish Cap provide new insights into rift evolution and structural style in the area. Our results show that major extension in the basin occurred between 167 Ma and 135 Ma, with most extension occurring prior to 151 Ma. We show that extension after 135 Ma largely occurred east of Flemish Cap due to a shift in the locus of rifting from the Orphan Basin to east of Flemish Cap. We find no evidence for discrete rifting events in the Orphan Basin, as has been suggested by other authors.&amp;#160; Kinematic restoration and associated heave measurements for the Orphan Basin show that extension was both widespread and relatively evenly distributed across the basin from Middle-Late Jurassic to Early Cretaceous.&lt;/p&gt;&lt;p&gt;We provide evidence for more widespread deposition of Jurassic strata throughout the Orphan Basin than previously interpreted, and show that Jurassic deposition was controlled by the occurrence and displacement of crustal-scale extensional detachment faults. &amp;#160;Structure in the three regional cross sections is dominated by large-scale, shallowly dipping extensional detachment faults. These faults mainly dip to the northwest and control the geometry and position of extensional basins &amp;#8211; grabens and half-grabens &amp;#8211; which occur at a range of scales. Stacked detachment surfaces, hyperextension, and attenuation of the crust are observed in central and eastern parts of the Orphan Basin. Zones of extreme crustal attenuation (to ca. 3.7 km) are interpreted to be coincident with large-displacement (up to 60 km) low-angle detachments. Results from crustal area balancing suggest that up to 41% of extension is not recognized through structural seismic interpretation, which we attribute to subseismic-scale ductile and brittle deformation, and uncertainties in the identification of detachment surfaces or complex structural configurations (e.g., overprinting of early extensional deformation).&lt;/p&gt;&lt;p&gt;Rifting style in the central, northern, and eastern parts of the Orphan Basin is dominated by low-angle detachment faulting with maximum extension perpendicular to the incipient rift axis. In contrast, structural geometries in the southwestern part of the basin are suggestive of transtensional deformation, and interplay of normal and strike-slip faulting.&amp;#160; Results from map-based interpretation show that strike-slip faults within this transtensional zone are associated with displacement transfer between half-grabens of opposing polarity, rather than regional strike-slip displacement.&amp;#160; These structures are interpreted as contemporaneous and kinematically linked to displacement along low-angle detachment surfaces elsewhere, and are not attributed to distinct episodes of oblique extension.&amp;#160; &amp;#160;&amp;#160;&amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


2013 ◽  
Vol 150 (5) ◽  
pp. 835-861 ◽  
Author(s):  
AMARA MASROUHI ◽  
OLIVIER BELLIER ◽  
HEMIN KOYI ◽  
JEAN-MARIE VILA ◽  
MOHAMED GHANMI

AbstractDetailed geological mapping, dating, and gravimetric and seismic data are used to interpret the Lansarine–Baouala salt structure (North Tunisia) as a salt canopy emplaced during the Cretaceous Period. The extensional tectonic regime related to the Cretaceous continental margin offered at least two factors that encouraged buried Triassic salt to extrude onto the sea floor and flow downslope: (i) extension induced normal faults that provided routes to the surface, and led to the formation of sub-marine slopes along which salt could flow; (ii) this structural setting led to differential sedimentation and consequently differential loading as a mechanism for salt movement. The present 40-km-long Lansarine–Baouala salt structure with its unique mass of allochthonous Triassic salt at surface was fed from at least four stems. The salt structure is recognized as one of the few examples worldwide of a subaerial salt canopy due to the coalescence of submarine sheets of Triassic salt extruded in Cretaceous times.


Sign in / Sign up

Export Citation Format

Share Document