MESOZOIC AND CAINOZOIC TECTONOSTRATIGRAPHY OF WESTERN ZOCA AND ADJACENT AREAS

1996 ◽  
Vol 36 (1) ◽  
pp. 209 ◽  
Author(s):  
D. B. Whittam ◽  
M. S. Norvick ◽  
C. L. Mclntyre

Increased exploration activity in Area A of the Timor Gap Zone of Cooperation between Australia and Indonesia (ZOCA) has created the need for revision of the existing stratigraphic framework of the region. A chronostratigraphic approach to the analysis of the Mesozoic and Cainozoic succession of Western ZOCA provides a framework for improved stratigraphic prediction. The framework is based on the identification of depositional sequences by the integration of seismic and well data. Genetically related depositional sequences have been grouped into seven 'megasequences' which reflect distinct stages in the tectonic development of the basin.The Mesozoic and Cainozoic succession in the Northern Bonaparte Basin was deposited in a marginal sag basin that was affected by Triassic to Lower Cretaceous extension related to continental separation along the northwest margin of Australia. Four stages are seen in the evolution of the basin since the end of the Permian. Relative tectonic quiescence during the Triassic preceded two cycles of extension related to continental separation during the Jurassic to Earliest Cretaceous. Continental separation was followed by the development of a Cretaceous/Tertiary passive margin and a subsequent phase of tectonism related to the Miocene/Pliocene collision of the Indo-Australian and Eurasian plates. A tentative correlation has been made between the megasequence framework of Western ZOCA and the geological succession exposed on Timor Island.The framework forms the basis for a system of common stratigraphic nomenclature for the Timor Gap. The model also assists in understanding the tectono-strati-graphic evolution of the basin and is a foundation for the development of new play concepts that will support continuing exploration activity in the area.

2021 ◽  
Author(s):  
Dengyi Xiao ◽  
Mingsheng Lv ◽  
Guangcheng Hu ◽  
Wenyuan Tian ◽  
Li Wang ◽  
...  

Abstract In Western UAE, the Middle Cretaceous petroleum system is composed of Shilaif source, Mishrif/Tuwayil reservoir and Tuwayil/Ruwaydha seal. Oil is discovered in Tuwayil sandstone in DH and NN fields. Well correlation of Tuwayil siliciclastic interval shows high heterogeneity and rapid lithology varies. Currently, a few general studies about Tuwayil sandstone was published. However, detailed sedimentary facies, reservoir characteristics and accumulation mechanism about Tuwayil are ambiguous. Limitation on these aspects prohibits enlarging exploration activity of Tuwayil and makes barriers to deepen understanding of the whole K2 PS. To enhance understanding on Tuwayil formation, well data in DH, NN fields and adjacent area was integrated. Dedicated single well analysis, well correlation and petrophysics study were carried out. Cores were observed and laboratory outcomes including TS, SEM, RCA, MICP, XRD were adopted into this study. Furthermore, we have also utilized 2D&3D seismic to illustrate the spatial distribution of Tuwayil siliciclastic setting and interior sediment pattern. Basically, the Tuwayil sand-shale interval represents the infilling of Mishrif/Shilaif intrashelf basin and mainly deposits in the tidal flat-delta facies. The epi-continental clast is sourced from the Arabian shield and transferred from west to east. In Western UAE, the Tuwayil depocenter located in DH field, where 4-5 sand layers deposit with net pay of 30-40ft. In NN field, only one sand layer develops with net pay about 4-6ft. Through deposition cycles identification and seismic reflection observation, two sand groups could be recognized in this interval. The lower group is constrained in the depocenter and influenced by the paleo-geomorphology background. The upper group overpassed the former set and pinched out around north of NN. The Mishrif/Shilaif slope area is another potential belt to enlarge Tuwayil discovery, where stratigraphic onlap could be observed and it probably represents the sand pinch-out in lower sand group. For the K2 PS, previous study believed the shale between Tuwayil sand and Mishrif separate these two reservoirs and works as cap rock for Mishrif grainstone. This study suggests that this shale is too thin and not continuous enough to hold the hydrocarbon in Mishrif. On that note, Tuwayil sand and Mishrif belong to the same petroleum system in NN and may have the same OWC. In the NN field, it is quite crucial to consider the extension of Tuwayil sand during evaluating the stratigraphic prospect of Mishrif because the hydrocarbon is mostly likely charged Tuwayil sand first and then gets into underlain Mishrif. This study provides updates and understandings on sedimentary facies, depositional pattern, hydrocarbon accumulation mechanism, reservoir extension and potential identification of Tuwayil formation, which has inspiring implications for the whole K2 PS and could also de-risk the further exploration activity in Western UAE.


2021 ◽  
pp. M57-2021-31
Author(s):  
Harald Brekke ◽  
Halvor S. S. Bunkholt ◽  
Jan I. Faleide ◽  
Michael B. W. Fyhn

AbstractThe geology of the conjugate continental margins of the Norwegian and Greenland Seas reflects 400 Ma of post-Caledonian continental rifting, continental breakup between early Eocene and Miocene times, and subsequent passive margin conditions accompanying seafloor spreading. During Devonian-Carboniferous time, rifting and continental deposition prevailed, but from the mid-Carboniferous, rifting decreased and marine deposition commenced in the north culminating in a Late Permian open seaway as rifting resumed. The seaway became partly filled by Triassic and Lower Jurassic sediments causing mixed marine/non-marine deposition. A permanent, open seaway established by the end of the Early Jurassic and was followed by the development of an axial line of deep marine Cretaceous basins. The final, strong rift pulse of continental breakup occurred along a line oblique to the axis of these basins. The Jan Mayen Micro-Continent formed by resumed rifting in a part of the East Greenland margin in Eocene to Miocene times. This complex tectonic development is reflected in the sedimentary record in the two conjugate margins, which clearly shows their common pre-breakup geological development. The strong correlation between the two present margins is the basis for defining seven tectono-sedimentary elements (TSE) and establishing eight composite tectono-sedimentary elements (CTSE) in the region.


2010 ◽  
Vol 82 (2) ◽  
pp. 439-449 ◽  
Author(s):  
Dilce F. Rossetti

The traditional view that the Brazilian Amazonia is located in a tectonically stable area since the Cretaceous is changing in front of the increasing documentation of fault reactivations even during the Holocene. How the sedimentary record has responded to these events is an issue that remains to be approached with basis on field data. This work focuses on the stratigraphic correlation of late Quaternary deposits from eastern Marajó Island, with the goal of demonstrating the role of fault reactivation on the origin and preservation of these deposits. Despite the location in a stable platform of a continental passive margin, three studied stratigraphic units display significant vertical offsets that define two depocenters that are better explained through tectonic displacements. This interpretation is reinforced by several morphostructural features related to faults that occur between the studied drills. Without the influence of tectonics, sediment preservation in this characteristically low-lying terrain would have been negligible. The results of the present work motivate to look for other tectonically-influenced areas in Amazonia, which similarly might have acted as sites for sediment accommodation during the late Quaternary. These sedimentary records have great potential to be the source of valuable information for reconstructing Quaternary geological events in Northern Brazil.


2021 ◽  
Author(s):  
A Zagorevski ◽  
C R van Staal ◽  
J H Bédard ◽  
A Bogatu ◽  
D Canil ◽  
...  

Ophiolite complexes are an important component of oceanic terranes in the northern Cordillera and constitute a significant amount of juvenile crust added to the Mesozoic Laurentian continental margin during Cordilleran orogenesis. Despite their tectonic importance, few systematic studies of these complexes have been conducted. Detailed studies of the pseudostratigraphy, age, geochemistry, and structural setting of ophiolitic rocks in the northern Cordillera indicate that ophiolites formed in Permian to Middle Triassic suprasubduction zone settings and were obducted onto passive margin sequences. Re-evaluation of ophiolite complexes highlights fundamental gaps in the understanding of the tectonic framework of the northern Cordillera. The previous inclusion of ophiolite complexes into generic 'oceanic' terranes resulted in significant challenges for stratigraphic nomenclature, led to incorrect terrane definitions, and resulted in flawed tectonic reconstructions.


1990 ◽  
Vol 30 (1) ◽  
pp. 342 ◽  
Author(s):  
W. J. Mudge ◽  
A. B. Thomson

RESMAP is an Exxon proprietary program that makes possible the building of three-dimensional geological models. The models consist of millions of tabular cells contained within a stratigraphic framework. The models are generated by the integration of log analysis, seismic interpretation and the geologist's well picks and interpretation.RESMAP models are easy to access for generating structural and stratigraphic geological cross-sections. Maps such as structure, top of porosity and net sand percentage can be generated as well as subcrop and supercrop maps. Hydrocarbon-in-place estimates are also made from the model.The Kingfish and West Kingfish fields each possess a complex stratigraphic framework and exhibit rapid facies changes in the nearshore marine sediments. Techniques available in RESMAP enable the integration of the well data and seismic maps to produce an accurate stratigraphic framework containing the geometries of truncation onlap and downlap. The interpolation of porosity data from the wells successfully captures the facies distribution. This is due to the excellent well spacing in the vicinity of the facies changes and the ability to place geological constraints on the interpolation.The model provides a valuable communication tool for the mass of data present in a field. The model can also be updated quickly upon receipt of new data, providing a dynamic reservoir description on which to base future field management.


1983 ◽  
Vol 20 (11) ◽  
pp. 1657-1672 ◽  
Author(s):  
Thomas M. Brocher

The nature of the upper sediments of the shelf and slope on a passive margin was investigated by using high-quality refraction profiles recorded by ocean-bottom seismometers off Nova Scotia. In agreement with previously published reflection profiles, well data, and lithospheric models for the evolution of passive margins, we found little thickening of the post-Early Cretaceous section, implying an even sedimentation rate over the outer shelf for this time period. The velocity model determined from slant stacks agreed reasonably well with well-log data, but had velocities slightly lower than those found from a nearby refraction line using first-arrival travel-time methods. Starting at the sea floor the compressional velocity–depth model consists of a gradient of roughly 0.4 s−1 to a depth of about 1.25 km, followed by another gradient of roughly 1 s−1 to a depth of about 3.5 km. Beneath this depth the velocity gradient approaches zero and can be modelled as a constant velocity layer. Stoneley waves were used to investigate the velocity structure of the upper 260 m of the sediment column. These velocities cannot be measured in the oil wells located on the shelf by conventional 3.5 kHz echo sounders or by measuring the sonic velocities of sediments collected in piston cores. A thinning of the Pleistocene–Holocene Sable Island Sand and Gravel layer was documented by pronounced differences in the propagation of Stoneley waves across the shelf. Although the origin of the thinning is uncertain, the shear-wave velocity determined for this unit, 260 m/s, is appropriate for an unconsolidated sand.


Author(s):  
Alireza Asadi ◽  
Hossain Rahimpour-Bonab ◽  
Mohsen Aleali ◽  
Mehran Arian

AbstractIn this study, our attempt is to integrate sedimentological and petrophysical data for reservoir evaluation in the sequence stratigraphic framework. Petrographic analysis of the Late Jurassic–Early Cretaceous Fahliyan Formation reservoirs of two oilfields in the northwest of the Persian Gulf led to recognition of twelve microfacies. They can be classified into four facies associations, including open marine, shoal, lagoon and tidal flat, which are deposited in a homoclinal ramp carbonate. Sequence stratigraphy of the studied successions led to the recognition of three third-order depositional sequences based on vertical changes in microfacies and gamma ray analysis. Except for the upper boundary of the third sequence, the other sequence boundaries are type I (SBT.1). Dissolution is the most important diagenetic feature that affected the lower depositional sequence which is caused by the development of subaerial exposure after the deposition of the Fahliyan Formation, whereas cementation is the main diagenetic feature affecting the second- and third depositional sequences, causing their lower reservoir quality. In order to identify the flow units, the flow zone index methods, porosity throat radius (R35) and modified Lorenz based on stratigraphy were applied. The key wells studied in this area have shown good correlation throughout the studied oilfields which may potentially be used for hydrocarbon exploration and field development in the Late Jurassic–Early Cretaceous deposits of the Persian Gulf. This study integrates geological and petrophysical data (rock typing) toward sequence stratigraphic framework.


Sign in / Sign up

Export Citation Format

Share Document