The effect of a gradual or rapid dietary changeover from a grazed pasture to a conserved forage-based diet on milk yield, cow condition and rumen pH of late-lactation dairy cows

2019 ◽  
Vol 59 (2) ◽  
pp. 249
Author(s):  
R. P. McDonnell ◽  
M. vH. Staines

A 40-day experiment was conducted to determine the effect of a gradual versus rapid changeover from grazed pasture to grass silage on production and performance in late-lactation Holstein–Friesian cows. Eighty cows were assigned to one of the following two treatments (two groups of 20 cows each): (1) gradual changeover from grazed pasture to grass silage over a 10-day adaptation period (GRAD), or (2) immediate changeover from grazed pasture to grass silage, with no adaptation period (RAPID). In addition to grazed pasture and grass silage, cows also received equal daily amounts of supplementary concentrates throughout the 40 days (ranging from 6.6 to 7.5 kg DM/cow). The experiment was divided into three periods. In Period 1 (Days 1–12), all cows received a generous pasture allowance and no grass silage was offered. In Period 2 (Days 13–22), GRAD cows were gradually introduced to grass silage on a stepwise basis, while still consuming grazed pasture, while RAPID cows received grazed pasture until Day 17, before switching to ad libitum grass silage from Day 18 onward. In Period 3 (Days 23–40), all cows received ad libitum pasture silage and no grazed pasture. Feed intake, milk volume and composition, and rumen pH were measured. Treatment did not affect estimated dry-matter intake of grazed pasture or measured dry-matter intake of silage. Milk yield did not differ between treatments from Day 1 to Day 18 (mean 29.3 L/cow; P > 0.05), but was greater in GRAD cows from Day 19 to Day 27 (mean 25.6 vs 22.1 L/cow; P < 0.001). From Day 28 onward, no effect of treatment was detected apart from a 3-day juncture from Day 34 to Day 36, where milk yield in the GRAD treatment was greater (mean 22.8 vs 21.0 L/cow; P = 0.02). Milk fat and protein concentrations were unaffected by treatment throughout (mean 4.15% for milk fat, 3.37% for milk protein; P > 0.05). Mean rumen pH was also unaffected by treatment in periods 1 and 2 (mean 6.27; P > 0.05), but were greater in Period 3 in GRAD cows (6.34 vs 6.26 for GRAD vs RAPID; P < 0.001), while the amount of time spent under pH 6.0 did not differ between treatments (mean 2.45 h/day; P > 0.05). Changing the dietary forage source from grazed pasture to grass silage over a 10-day period increased milk yield, compared with having no dietary adaptation period, and the cumulative difference for the duration of this experiment amounted to 37 L/cow.

1985 ◽  
Vol 65 (4) ◽  
pp. 897-903 ◽  
Author(s):  
D. M. VEIRA ◽  
M. IVAN ◽  
G. BUTLER ◽  
J. G. PROULX

Following weaning at 6–7 mo of age, 36 beef steers were used to determine production responses when grass silage was supplemented with barley or fishmeal. The silage was made from direct-cut, formic- acid-treated grass harvested from a mixed sward and had a high nitrogen content but poor fermentation characteristics. The silage was fed ad libitum for 98 days either alone or supplemented with 500 g fishmeal or 500 g barley per day. Both fishmeal and barley increased total dry matter intake (P < 0.01) by an amount equivalent to the quantity of supplement offered but had no effect on silage intake (P > 0.05). Steers fed the fishmeal grew substantially faster than either the barley (0.53 kg/day) or unsupplemented (0.54 kg/day) groups (P < 0.01). Fishmeal supplementation resulted in a large reduction (35%) in the amount of feed required per kilogram of gain. Key words: Cattle, grass silage, fishmeal, growth


2017 ◽  
Vol 26 (2) ◽  
Author(s):  
Katariina Manni ◽  
Marketta Rinne ◽  
Erkki Joki-Tokola ◽  
Arto Huuskonen

The objective of this study was to determine the effects of restricted feeding strategies on performance of growing and finishing dairy bulls. The feeding experiment comprised in total 32 Finnish Ayrshire bulls with an initial mean live weight (LW) of 122 kg and age of 114 days. Feeding treatments were silage ad libitum and daily barley allowance of 93 g kg-1 LW0.60 (A); restricted feeding (R) at 0.80 × A; increasing feeding (I) similar to R until LW of 430 kg and thereafter similar to A; and decreasing feeding (D) similar to A until LW of 430 kg and thereafter similar to R. Restricted feeding strategies decreased daily dry matter intake and LW gain and increased the time to reach the target carcass weight (300 kg). Bulls on I exhibited compensatory growth. There were no significant differences in feed efficiency between the treatments. The present experiment indicates that silage intake ad libitum and supplemented with concentrate resulted in most effective beef production.


Author(s):  
C.J. Hoogendoorn ◽  
C.W. Holmes ◽  
A.C.P. Chu

Two levels of grazing intensity were unposed on pasture during a spring-time pre-treatment period in two years at Massey University's Dary Cattle Research Unit. The two grazing intensws were lax (L), 2000-2500 kg DMlha residual herbage mass (RHM) and intense (I) 1000-1500 kg DM/ha RHM imposed for 2 grazing rotations. During this period, net herbage accumulation (NHA) on the L swards was approximately twice that on I wards. However, by early summer, NHA was greater on the I than L swards. Subsequently, during the experimental feeding period in early summer, herbage on the I swards contained lower percentages of reproductive tillers, grass stem, and senescent matter, and was of higher digestibllity than herbage on the L wards. Durmg the feedlng period, cows grazing the I wards had greater yields of milk and milk fat than cows on the L wards when offered both generous and restricted daily herbage dry matter allowances. The effect of ward type on dry matter intake (DMI) was dependent on dry matter allowance. However, when a common allowance of leaf was offered, DMI, milk and milk fat yield were not significantly affected by sward type on offer. The results emphasise the importance of maintaining green, leafy swards into late spring and summer in order to maximise milk yield per cow at this time. This was achieved by maintaining a RHM of no more than 1500 kg DMlha throughout spring by imposing sufficiently high stocking rates. Keywords: residual herbage mass, ward characteristics, dry matter allowance, leaf allowance, dry matter intake, milk yield.


2008 ◽  
Vol 17 (4) ◽  
pp. 351 ◽  
Author(s):  
L. KRÍZOVÁ ◽  
J. TRINÁCTÝ ◽  
M. RICHTER

The aim of this study was to determine the influence of leucine supplement in the form of rumen-protected tablets on milk yield and composition and plasma amino acids in four high-yielding lactating Holstein cows. The experiment was carried out as a cross-over procedure and was divided into 4 periods of 14 d (10 d preliminary period and 4 d experimental period). Cows were fed ad libitum a diet based on maize silage, lucerne hay and a supplemental mixture. The diet, defficient in methionine, lysine, and leucine, was supplemented with methionine+lysine (Control) or methionine+lysine+leucine (Leu) in rumen protected form. The dry matter intake, milk yield and milk yield expressed in energy corrected milk did not differ significantly between the treatments. Milk protein content and yield did not show statistically significant variation. The contents and yield of casein, fat, lactose and urea were unaffected by the treatment. Blood metabolites did not vary between the treatments. The introduction of Leu resulted in higher plasma levels of proline (p


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 264 ◽  
Author(s):  
Lara Moran ◽  
Shannon S. Wilson ◽  
Cormac K. McElhinney ◽  
Frank J. Monahan ◽  
Mark McGee ◽  
...  

The objective was to compare the quality of beef from bulls reared in typical Irish indoor systems or in novel grass-based systems. Bulls were assigned to one of the following systems: (a) grass silage plus barley-based concentrate ad libitum (CON); (b) grass silage ad libitum plus 5 kg of concentrate (SC); (c) grazed grass without supplementation (G0); (d) grazed grass plus 0.5 kg of the dietary dry matter intake as concentrate (GC) for (100 days) until slaughter (14.99 months). Carcass characteristics and pH decline were recorded. Longissimus thoracis was collected for analytical and sensory analysis. Lower carcass weight, conformation and fatness scores were found for grazing compared to CON and SC groups. CON bulls had highest intramuscular fat and lighter meat colour compared with grazing bulls. The SC meat (14 days aged) was rated higher for tenderness, texture, flavour and acceptability compared with grazing groups. CON saturated and monounsaturated fatty acid (FA) concentration was highest, conversely, omega-3 FA concentration was higher for GC compared with CON, while no differences were found in polyunsaturated FA. In conclusion, while market fatness specification was not reached by grazed grass treatments, beef eating quality was not detrimentally affected and nutritional quality was improved.


2003 ◽  
Vol 2003 ◽  
pp. 107-107
Author(s):  
M. H. Fathi ◽  
A. Nikkhah

Cereal grains can provide the major source of energy in diets in order to meet the nutrient requirements of high producing dairy cows. However the amount of starch that can be included in the diets of dairy cows is limited particularly if starch is rapidly fermented such as barley starch. Reduction of feed intake, rumen pH, milk fat test, microbial growth and other metabolic disorders are expected if ruminally degradable starch is fed in amount that cant be efficiently metabolized by rumen microbs. Various techniques for processing barley grain have been developed to decrease the degradability of dry matter in rumen without reducing its extent of digestion. McNiven (1995) showed roasting of barley is more effective treatment. The objective of this experiment was to study of effects the roasting and ammoniation of barley grain on rumen pH, feces pH, milk yield and milk composition in dairy cows.


1980 ◽  
Vol 31 (3) ◽  
pp. 243-250 ◽  
Author(s):  
K. Aston ◽  
J. C. Tayler

ABSTRACT1. Experiment 1. Six treatment groups of one British Friesian and four South Devon × British Friesian bulls, initially 432 kg mean live weight and aged 491 days, were offered individually maize or grass silage ad libitum plus 0, 5 or 10g barley dry matter per kg live weight daily for 80 days. The silages had similar digestible dry matter and estimated metabolizable energy contents but the grass silage contained more ammonia and acetic, propionic and butyric acids. Mean values for groups receiving respectively maize and grass silage diets were for dry-matter intake 17·7, 20·3, 20·4 and 13·0, 16·6, 18·7 g/kg live weight and for live-weight gain 1·00, 1·32, 1·46 and 0·65, 0·98, 1·22kg/day. Significantly more maize than grass silage dry matter was eaten when the silages were given alone and dry-matter intakes, live-weight and carcass gains were greater for maize silage diets. Dry-matter intake, live-weight and carcass gains, efficiency of feed use and carcass quality significantly improved when barley was given.2. Experiment 2. Six groups of five British Friesian bulls, initially 418 kg mean live weight and aged 474 days, were offered individually maize silage ad libitum with either urea or one of two quantities of aqueous ammonia mixed in at the time of feeding, plus 0 or 5 g barley dry matter per kg live weight daily for 90 days. The urea and ammonia-treated silages contained 125, 124 and 148 g crude protein per kg dry matter respectively, with pH values of 3·8, 3·9 and 4·3, and when given alone or with barley mean daily intakes (g dry matter per kg live weight) were 17·1, 18·6 for urea-treated silage diets, and 17·8, 18·8 and 16·9, 19·1 respectively for ammoniatreated silage diets. Live-weight gains were 0·69, 0·94, 0·63, 1·09, 0·64 and 1·07 kg/day. Ammonia treatment had no effect on intake or live-weight gain. Live-weight and carcass gains and carcass quality improved when barley was given.3. The maize silage offered in Experiment 1 contained similar metabolizable energy but more starch than that in Experiment 2 and was used more efficiently for live-weight gain.


2013 ◽  
Vol 46 (4) ◽  
pp. 123-128
Author(s):  
Olusola Adeyanju Olorunnisomo ◽  
Gladys Abiemwense Ibhaze

Abstract Year-round availability of feed is a major concern for dairy farmers in many parts of the tropics. Silage making is a reliable means of providing feed for dairy cattle during periods of forage scarcity. In this study, Elephant grass (EG) (Pennisetum purpureum) was ensiled with cassava peel (CSP) at 0, 10, 30 and 50% levels of inclusion on a wet basis. At 21, 42 and 63 days of ensiling, silage samples were taken for chemical analysis and the remaining materials were fed to four lactating Sokoto Gudali cows for a period of 84 days using a Latin square design. Dry matter (DM) content of silage mixtures increased from 18.22 to 28.70% as level of CSP in the silage mixture increased while crude protein (7.33 to 6.08%) and crude fibre (32.80 to 23.95%) decreased. Dry matter intake of cows, milk yield and feed conversion ratio (FCR) varied (P < 0.05) with inclusion of cassava peel in the silage mixtures. Dry matter intake of cows increased from 2.56 to 3.84% of body weight (BW) and milk yield from 2.90 to 6.70 kg/d as proportion of CSP in the grass silage increased. Feed conversion ratio of cows ranged from 2.08 to 3.23 and improved with inclusion of CSP in the silage. These results show that addition of cassava peel to Elephant grass silage improved intake and milk production in Sokoto Gudali cows fed Elephant grass silage.


Author(s):  
J J Hyslop ◽  
D J Roberts

In a previous experiment outlined at last year's conference (Hyslop and Roberts, 1988), it was demonstrated that replacement of a proprietary pelleted concentrate with malt distillers grains (draff), should be limited to 15% of total dry matter intake (DMI) when draff is offered in two feeds per day. However there is little evidence to validate such a limitation when draff is used as a concentrate replacement in complete diets. This experiment examined the effect of replacing barley/soya with draff plus additional minerals in silage based complete diets.In a cyclic changeover design experiment consisting of 4 three week periods, fifteen British Friesian cows in early lactation were offered five treatments. Cows were given ad libitum access to one of five complete diets based on grass silage (69 “D”). Draff plus additional minerals gradually replaced barley/soya at increasing rates in diets 0-4 respectively.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 179-180
Author(s):  
Xiaoge Sun ◽  
Shu Zhang ◽  
Erdan Wang ◽  
Na Lu ◽  
Wei Wang ◽  
...  

Abstract Dramatic increases in milk yields in recent decades have created challenges in terms of rumen pH and microbial health which ultimately impact dairy cow health. The objective of this study was to assess the effects on ruminal pH, Volatile Fatty Acid (VFA), microbiota, inflammation, and performance of high-yield dairy cows by supplementing Saccharomyces cerevisiae culture (SC). Forty Holstein cows were divided into two groups based on their milk yield, days of milk, and parity fed the same basal ration diet that did or did not contain 100 g of SC /cow per day. Individual dry matter intake (DMI) and milk yield were recorded each day. Rumen fluid and milk samples were collected after 2 hours of morning feeding at intervals of 15 days during the experiment period. The data showed that rumen pH was increased by 0.19 (P = 0.09) when SC was supplemented than no SC was provided. SC-supplemented cow consumed 0.28 kg (P &lt; 0.05) extra DM/d. Those supplemented with SC produced 1.36 kg (P &lt; 0.05) more milk/cow per day than did non-supplemented cows. Milk fat percentage was higher (4.11 vs. 3.96%) for cows receiving SC. There were no differences in milk protein percentage. Rumen fluid VFA concentration was not statistically affected by SC but was numerically higher acetic and lower propionic for supplemented cows. The blood of the SC group with lower inflammation cytokines and somatic cell count (SCC). SC-supplemented cows had a greater relative abundance of Prevotellaceae, Succinivibrionaceae, Fibrobacteraceae, Lactobacillaceae, and lower relative abundance of Spirochaetaceae, Methanobacteriaceae, Enterobacteriaceae than the unsupplemented cows. It had greater functions on xylanolysis, fermentation, cellulolysis in the rumen in terms of the KEGG function prediction analysis. This study demonstrated that high-yield lactation cows receiving supplemental SC produced more milk and potentially reduced the inflammation and enhanced rumen cellulolysis bacteria growth.


Sign in / Sign up

Export Citation Format

Share Document