Changes in pH and organic carbon were minimal in a long-term field study in the Western District of Victoria

2002 ◽  
Vol 53 (2) ◽  
pp. 115 ◽  
Author(s):  
J. W. D. Cayley ◽  
M. R. McCaskill ◽  
G. A. Kearney

Changes in soil pH from a long-term experiment at Hamilton, Vic., associated with time, fertiliser application, and stocking rate were assessed. The pH was measured in a 1 :5 suspension of soil in water (pHW) from 1980 onwards and in a 1:5 suspension of soil in 0.01 M CaCl2 (pHCa) from 1984 onwards. Topsoils (0–10 cm) were sampled regularly from 1980 to 1999, and the soil profile to a depth of 80 cm in 1994. The site was sown to perennial ryegrass, phalaris, and subterranean clover in 1977. Treatments fertilised with different amounts of superphosphate were grazed by sheep at stocking rates of 7–19 dry sheep equivalents (DSE)/ha. Average applications of phosphorus (P) ranged from 0.5 to 38.7 kg P/ha.year. The pHCa of the topsoil in 1984 was 4.9. It decreased at an average rate of 0.005 pHCa or 0.008 pHW units/year, with little variation due to fertiliser or stocking rate. Measurements in 1994 revealed subtle but statistically significant (P < 0.01) trends in soil pHCa that were associated with grazing pressure, inputs of fertiliser, and whether or not areas sampled were used by the sheep for camping. The top 0–5 cm of soil was slightly less acidic (+0.07 pHCa units) in the camp areas compared with non-camp areas. Below 5 cm to a depth of 80 cm, camp areas were more acidic (–0.19 pHCa units). At the highest stocking rates, heavier applications of superphosphate were associated with greater subsoil acidity: –0.06 pHCa units per 100 kg phosphorus (P) applied. There was no relationship at medium stocking rates. At low stocking rates, higher P applications were associated with more alkaline subsoils. Net removal of product from 1979 to 1994 (wool and meat removed from plots and excreta transferred to camps) was estimated to be equivalent to 140–380 kg/ha of lime over this 15-year period. The organic carbon (OC) content of the topsoil did not change over 20 years of records from 1979, and was unaffected by inputs of P. In 1994, the OC content of the 0–5 cm layer of topsoil was greater than the 5–10 cm layer (mean values 5.5% and 3.8% respectively; P < 0.001). The OC content of camp areas was higher than that of non-camp areas, this difference being more pronounced in the 0–5 cm layer (P < 0.01). It was concluded that the rate of change of pH was slow because of the high pH buffering capacity of the soil, the small amount of alkalinity removed in product, and the generally high perennial grass content of the pastures. Soils shown to be at greatest risk of acidification from this study were those under camp areas, and where high fertiliser rates were applied to pastures with a low perennial grass content. Rotational grazing should diminish these problems by reducing the concentration of excreta in camp areas, and favouring perennials over annuals in both camp and non-camp areas. Inputs of lime may eventually be needed to compensate for the acidifying effect of product removal.

1999 ◽  
Vol 50 (4) ◽  
pp. 537 ◽  
Author(s):  
G. R. Saul ◽  
G. A. Kearney ◽  
P. C. Flinn ◽  
C. L. Lescun

The effect of superphosphate fertiliser on digestible dry matter (DDM) and crude protein (CP) percentages of perennial ryegrass and subterranean clover was assessed on a long-term, grazed experiment in western Victoria. CP of both species increased significantly (3–6 units) where long-term average phosphorus (P) applications were 33 kg/ha.year compared with 1 kg/ha.year. CP of herbage was also greater on paddocks grazed at higher (9–23 ewes/ha) than lower (5–13 ewes/ha) stocking rates (1–3 units). DDM of subterranean clover significantly increased (8–10 units) with higher superphosphate applications but there was little effect on the DDM of perennial ryegrass. Long-term applications of superphosphate were associated with larger increases in both DDM and CP than if the same rate was applied in autumn of the year of measurement. For subterranean clover, 30 kg/ha of P applied to infertile soils (Olsen P 5 mg/kg) in autumn increased the DDM of herbage collected in September by only 4–6 units. The nutritive value of most volunteer pasture species also increased with higher superphosphate applications but the DDM of these species was usually inferior to perennial ryegrass. The results highlight the importance of monitoring nutritive value, pasture composition, and herbage production to quantify fully the likely effect of fertiliser applications on animal production.


1974 ◽  
Vol 82 (3) ◽  
pp. 497-506 ◽  
Author(s):  
G. N. Harrington ◽  
D. Pratchett

SUMMARYA series of stocking rate trials running for differing periods between 1961 and 1972 are summarized. Weight gains of steers grazed at 2·4, 1·2, 0·8 and 0·6 ha/300 kg animal on Cymbopogon/Hyparrhenia/Themeda pasture are detailed. Subtreatments included continuous and rotational grazing and the removal of the unpalatable Cymbopogon afronardus.Weight gains at 0·6 ha/animal were higher than a linear relationship between stocking rate expressed as animals/ha and weight gain would predict. This was ascribed to the dominance of the high quality grass Brachiaria decumbens at this grazing pressure.Rotational grazing was less productive than continuous grazing, because C. afronardus increased more rapidly under this management, but there was less soil erosion. Removal of C. afronardus increased cattle growth rates and gains/ha by over 40% at 0·6 ha/animal. The cost of clearing this weed should be recovered in 2 years from a commercial cattle ranch. A grazing pressure of ca. 0·8 ha/animal is expected to maximize long-term profits on C. afronardus-free Ankole rangeland and in 3 years in this trial average gains of 0·29 kg/day/animal were achieved. This was an annual production level of 131 kg/ha/annum, which compared with 53 kg/ha at 2·4 ha/animal and 143 kg/ha at 0·6 ha/animal.


Soil Research ◽  
1977 ◽  
Vol 15 (2) ◽  
pp. 147 ◽  
Author(s):  
GD Kohn ◽  
GJ Osborne ◽  
GD Batten ◽  
AN Smith ◽  
WJ Lill

Increases in total nitrogen in a grazing experiment at Wagga Wagga (N.S.W.) over the years 1962-1966 were related to the levels of superphosphate applied (0-375 kg ha-1), the average rate of increase being 59 kg ha-1 year-1. The rate of change varied between years and was negative in a dry year. Total sulphur levels were not influenced by phosphate treatments (mean 150 ppm), but sulphate sulphur was only maintained by the highest superphosphate level. Total, aluminium, iron, calcium and 'available' phosphate increased with superphosphate levels. The level of aluminium-bound phosphate increased more rapidly than the other fractions. In the treatments without applied phosphate the aluminium bound phosphate declined more rapidly than the other fractions. Organic carbon was not influenced by treatments but showed an increase with time. The C:N ratio declined from 13 to 11.8 during the experiment. Soil pH declined by 0.18 pH units, but this was not affected by superphosphate levels. Stocking rates had no effect on these parameters of soil fertility.


1971 ◽  
Vol 22 (1) ◽  
pp. 81 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The applied phosphorus requirement of a pasture sown to subterranean clover was measured with and without grazing. Under moderate grazing pressure, in the year of establishment, the pasture required about 50 % more phosphorus than when ungrazed. In the following season, at a higher stocking rate, the grazed areas needed twice as much phosphorus as the ungrazed to make 90% of their maximum growth. In both years this difference in requirement between stocked and unstocked treatments was present throughout the growing season. Increased phosphorus requirement under grazing is associated with the need for greater uptake of phosphorus under conditions where redistribution of absorbed phosphorus within the plant is prevented by defoliation. It does not appear to be due to effects of defoliation on root size. Nor does it depend on differential light interception or on changes in botanical composition.


1983 ◽  
Vol 101 (1) ◽  
pp. 1-7 ◽  
Author(s):  
A. Pott ◽  
L. R. Humphreys

SUMMARYSheep were grazed for 2 years at stocking rates of 7, 14, 21 and 28/ha on a pasture comprising Lotononis bainesii and Digitaria decumbens cv. Pangola at Mt Cotton, south–east Queensland. There were six replicates of each treatment grazed in rotation with 3 days' grazing followed by 15 days' rest.The initial dominance of lotononis was lost after 6 months of grazing and lotononis failed to persist satisfactorily at any stocking rate. Demographic studies showed that lotononis behaved as a short-lived plant, predominantly annual, with some vegetative perennation as stolon-rooted units under heavy grazing. Soil seed reserves varied from 5800 to 400 m2 at the lightest and heaviest stocking rates respectively. Lotononis failed to regenerate under Pangola shading or inopportune high grazing pressure. Soil bulk density (0–7 cm) increased from 1·2 to 1·4 g/cm3 according to stocking rate.


1980 ◽  
Vol 4 (2) ◽  
pp. 77-79
Author(s):  
Robert C. Sparks ◽  
Norwin E. Linnartz ◽  
Harold E. Harris

Abstract Pruning and thinning a young natural stand of longleaf pine (Pinus palustris Mill.) in southwest Louisiana had little influence on height. However, diameter growth was reduced substantially as pruning intensity or stocking rate increased up to 25-percent live crown and 200 stems per acre, respectively. Improved diameter growth at lower stocking rates was not sufficient to equal the total basal area increment of 200 trees per acre.


2018 ◽  
Vol 47 (2) ◽  
pp. 336-356 ◽  
Author(s):  
Gregory L. Torell ◽  
Katherine D. Lee

Climate change will increase variability in temperature and precipitation on rangelands, impacting ecosystem services including livestock grazing. Facing uncertainty about future climate, managers must know if current practices will maintain rangeland sustainability. Herein, the future density of an invasive species, broom snakeweed, is estimated using a long-term ecological dataset and climate projections. We find that livestock stocking rates determined using a current method result in lower forage production, allowable stocking rate, and grazing value than an economically efficient stocking rate. Results indicate that using ecology and adaptive methods in management are critical to the sustainability of rangelands.


1967 ◽  
Vol 7 (28) ◽  
pp. 434
Author(s):  
WR McManus

Concentrations of total nitrogen and total volatile fatty acids in the rumen fluid of sheep grazing improved pastures were measured for ten months in a dry year on the southern tablelands of New South Wales, and the concentrations of nitrogen and volatile fatty acids (V.F.A.) were related to season, wool production, and grazing management. The observations were made during two long-term grazing management experiments. In the first experiment four groups of breeding Merino ewes grazed a Wimmera ryegrass-subterranean clover (Lolium rigidum Gaud.-Trifolium subterraneum L.) pasture. A deferred grazing system (autumn saving) of pasture management was compared with continuous grazing at stocking rate treatments equivalent to 7.0 and 3.5 ewes to the acre. In the second experiment two groups of Merino weaners grazed a Phalaris tuberosa-subterranean clover pasture at a stocking rate equivalent to 8.6 sheep to the acre. One group received a hay supplement, the other did not. In both experiments nitrogen values were low between late autumn and mid-winter and again between late spring and summer, and high in early autumn and again in spring (P<0.05). The low levels were about 55 per cent of peak autumn and spring levels in (experiment 1) and 60 per cent of peak autumn and spring levels in (experiment 2). Total V.F.A. did not vary significantly between seasons in either experiment. At the higher stocking rate the ewes had lower levels of rumen total nitrogen than at the lower stocking rate. V.F.A. did not vary consistently between stocking rates. At both stocking rates ewes on the autumn saving system of grazing management had more nitrogen in the rumen fluid during late pregnancy and early lactation than did those on the continuous grazing system (P<0.001). After the ewes had access to the saved pasture, autumn saving resulted in a higher concentration of volatile fatty acids than continuous grazing (P< 0.05). Although feeding a hay supplement benefited the weaners the concentrations of total nitrogen in the rumen fluid of the two groups of sheep were similar. There was a fairly consistent tendency for the group receiving hay to have lower concentrations of volatile fatty acids in their rumen fluid. Possible reasons for these effects are discussed.


1976 ◽  
Vol 16 (78) ◽  
pp. 110 ◽  
Author(s):  
JJ Doyle ◽  
MJ Sharkey

Length, weight, branching and chemical composition of roots of barley grass (Hordeum leporinum) and subterranean clover, (Trifolium subterraneum), the main components of a non-irrigated pasture were measured in the fourth year of an experiment on pastures grazed by Corriedale wethers. The grazing treatments were in a factorial design (2 x 2 x 3) replicated three times, with three stocking rates, two levels of nitrogen fertilizer and two methods of management. Grass and clover density was reduced progressively as stocking rate was increased from 10 to 12 to 17 wethers ha-1 but the surviving plants at maturity had vigorous root systems. This performance of annual species contrasts with that of perennial pasture species where root development and root branching may be expected to decline with increase in grazing pressure. Applications of nitrogen fertilizer annually at rates of 0 or 67 kg ha-1 had little effect on density of grasses or clovers but clover roots were lighter and had fewer rhizobia nodules where nitrogen fertilizer had been applied. The management of pasture by deferment of grazing during regeneration was beneficial to clover plants in that their root structure was larger at maturity; similar effects were not evident in grass roots.


1988 ◽  
Vol 28 (6) ◽  
pp. 737 ◽  
Author(s):  
DL Little ◽  
PE Beale

Pastures containing the oestrogenic subterranean clover, Yarloop, were renovated and sown to Trikkala subterranean clover at the rate of 9 kg ha-1 germinable seed. The resultant pastures were continually grazed at either 7, 9 or 12 ewes ha for 6 years. Control Yarloop pastures were grazed similarly. Trikkala established at approximately 50 plants m-2 and represented 80% of all clover present in the year of sowing. Six years later Trikkala was successfully persisting at all stocking rates in terms of clover dry matter in spring (Trikkala 77%, Yarloop 23%), soil seed reserves in spring (Trikkala 450-1000 kg ha-1, Yarloop 300-450 kg ha-1) and plant density in spring (Trikkala 600-1000 plants m-2, Yarloop 200 plants m-2). Over the 6 years of the trial the proportion of Trikkala and Yarloop approached an equilibrium of 75% Trikkala to 25% Yarloop in all agronomic data collected. Compared with the control Yarloop pastures, the renovated Trikkala pastures maintained a greater clover percentage at all stocking rates. Available dry matter at the high stocking rate was consistently greater in the Yarloop pastures during winter and spring. At the low and medium stocking rates available dry matter tended to be greater in the Yarloop treatments for the first 2 years but was similar for both treatments in the latter 3 years. Clover scorch disease in the Yarloop pasture was controlled by spraying with a fungicide. Trikkala pastures were not sprayed and suffered minimal damage from the disease. Trikkala should perform better relative to Yarloop where clover scorch is a problem. It is concluded that Trikkala subterranean clover can successfully replace Yarloop subterranean clover in pastures previously dominated by Yarloop.


Sign in / Sign up

Export Citation Format

Share Document