Using soil, climate, and agronomy to predict soil water use by lucerne compared with soil water use by annual crops or pastures

2006 ◽  
Vol 57 (3) ◽  
pp. 347 ◽  
Author(s):  
P. R. Ward ◽  
S. F. Micin ◽  
F. X. Dunin

The incorporation of perennials in general, and lucerne in particular, into farming systems of southern Australia has been proposed as a possible means to slow or stop the spread of dryland salinity. In order to be effective, lucerne roots must remove substantially more water from the soil than roots produced by annual crops and pastures. The term ‘buffer’ is used here to denote the extra water storage created by lucerne in addition to that normally created by an annual crop or pasture. In trials across southern Australia, lucerne has proved variable in its ability to create a buffer. In this research, we established 3 new trials, and collated results from current and published trials across Australia, to determine the effect of various edaphic (soil pH, texture, depth, and density for A and B horizons), climatic (average and actual seasonal rainfall), and agronomic (lucerne age, plant density, dry matter production, and rooting depth) factors on buffer size created by lucerne. Data from 26 trials were analysed, representing 84 site × year comparisons. The mean lucerne buffer for all comparisons was 91 mm, and increased with lucerne age. Buffers were generally greater for heavier-textured soils, but standard deviations of the means were large. Within a broad soil type, regression equations were developed to predict buffer size from climatic, edaphic, and agronomic factors, with r2 values ranging between 0.96 and 0.84, and standard errors ranging between 40 and 44 mm. For all soil types, average summer rainfall (but not actual summer rainfall) was a significant component of the regression, suggesting that management of the lucerne stand, in terms of maintaining leaf area during summer, may have an important role in buffer development.

2003 ◽  
Vol 54 (8) ◽  
pp. 751 ◽  
Author(s):  
Murray Unkovich ◽  
Kerrin Blott ◽  
Alex Knight ◽  
Ivan Mock ◽  
Abdur Rab ◽  
...  

Annual crops were grown in alleys between belts of perennial shrubs or trees over 3–4 years at 3 sites across low rainfall (<450 mm) south-eastern Australia. At the two lower rainfall sites (Pallamana and Walpeup), crop grain yields within 2–5 m of shrub belts declined significantly with time, with a reduction equivalent to 45% over 9 m in the final year of cropping. At the third, wetter site (Bridgewater), the reduction in crop grain yields adjacent to tree belts was not significant until the final year of the study (12% over 11 m) when the tree growth rates had increased. The reductions in crop yield were associated with increased competition for water between the shrub or tree belts and the crops once the soil profile immediately below the perennials had dried. At all 3 sites during the establishment year, estimates of water use under the woody perennials were less than under annual crops, but after this, trends in estimates of water use of alley farming systems varied between sites. At Pallamana the perennial shrubs used a large amount of stored soil water in the second summer after establishment, and subsequently were predominantly dependent on rainfall plus what they could scavenge from beneath the adjacent crop. After the establishment year at the Walpeup site, water use under the perennial shrubs was initially 67 mm greater than under the annual crop, declining to be only 24 mm greater in the final year. Under the trees at Bridgewater, water use consistently increased to be 243 mm greater than under the adjacent annual crop by the final year. Although the shrub belts used more water than adjacent crop systems at Walpeup and Pallamana, this was mostly due to the use of stored soil water, and since the belts occupied only 7–18% of the land area, increases in total water use of these alley farming systems compared with conventional crop monocultures were quite small, and in terms of the extent of recharge control this was less than the area of crop yield loss. At the wetter, Bridgewater site, alley farming appeared to be using an increasing amount of water compared with conventional annual cropping systems. Overall, the data support previous work that indicates that in lower rainfall environments (<350 mm), alley farming is likely to be dogged by competition for water between crops and perennials.


2005 ◽  
Vol 56 (7) ◽  
pp. 743 ◽  
Author(s):  
Heping Zhang ◽  
Neil C. Turner ◽  
Michael L. Poole

Water use of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), canola (Brassica napus L.), and lucerne (Medicago sativa L.) was measured on a duplex soil in the high rainfall zone (HRZ) of south-western Australia from 2001 to 2003. Rainfall exceeded evapotranspiration in all years, resulting in transient perched watertables, subsurface waterlogging in 2002 and 2003, and loss of water by deep drainage and lateral flow in all years. There was no significant difference in water use among wheat, barley, and canola. Lucerne used water at a similar rate to annual crops during the winter and spring, but continued to extract 80−100 mm more water than the annual crops over the summer and autumn fallow period. This resulted in about 50 mm less drainage past the root-zone than for annual crops in the second and third years after the establishment of the lucerne. Crop water use was fully met by rainfall from sowing to anthesis and a significant amount of water (120−220 mm) was used during the post-anthesis period, resulting in a ratio of pre- to post-anthesis water use (ETa : ETpa) of 1 : 1 to 2 : 1. These ratios were lower than the indicative value of 2 : 1 for limited water supply for grain filling. High water use during the post-anthesis period was attributed to high available soil water at anthesis, a large rooting depth (≥1.4 m), a high proportion (15%) of roots in the clay subsoil, and regular rainfall during grain filling. The pattern of seasonal water use by crops suggested that high dry matter at anthesis did not prematurely exhaust soil water for grain filling and that it is unlikely to affect dry matter accumulation during grain filling and final grain yield under these conditions.


2010 ◽  
Vol 90 (4) ◽  
pp. 489-497 ◽  
Author(s):  
H W Cutforth ◽  
P G Jefferson ◽  
C A Campbell ◽  
R H Ljunggren

In the semiarid prairie of western Canada, there is renewed interest for including short durations (≤3 yr) of perennial forage in rotations with annual crops. However, there are producers who want to grow longer durations (≥4 yr) of perennial forages in rotational systems. Therefore, we assessed spring wheat (Triticum aestivum L.) yield, grain protein, and water use efficiency following 6 yr of either crested wheatgrass [Agropyron cristatum (L.) Gaertn.], or alfalfa (Medicago sativa L.), or wheat, and then 1 yr of fallow. Yield, water use, and water use efficiency were significantly lower in the first year of spring wheat production (2000) when the prior crop was crested wheatgrass or alfalfa than when it was wheat. In the second year (2001), which was a near record drought year, wheat yield and water use were significantly lower when the prior crop was alfalfa than when it was grass or wheat. From 2002 to 2005, there were no consistent differences in water use, water use efficiency, or yield of wheat due to the prior perennial crop. Wheat grain protein concentration was significantly higher following alfalfa compared with following crested wheatgrass or continuous spring wheat from 2000 to 2005. This effect was attributed to the higher N-supplying power of the soil following alfalfa. Soil water content below the rooting depth of most annual crops (≥120 cm depth) was reduced by the prior alfalfa crop, and there was no evidence from 2000 to 2005 that soil water recharge was occurring below the 150-cm depth. Key words: Semiarid prairie, alfalfa, grass, spring wheat, yield, protein, water use


2012 ◽  
Vol 92 (4) ◽  
pp. 803-807 ◽  
Author(s):  
P. R. Miller ◽  
J. A. Holmes

Miller, P. R. and Holmes, J. A. 2012. Short Communication: Comparative soil water use by annual crops at a semiarid site in Montana. Can. J. Plant Sci. 92: 803–807. Results for soil water use in the semiarid northern Great Plains are presented in detailed tabular format for 15 crops in an ideal environment for comparative water use assessment. The effective rooting depth of winter wheat (Triticum aestivum L.) varied relative to spring wheat; it was often similar and never less. Sunflower (Helianthus annuus L.) averaged 43 mm greater soil water use below 0.9 m compared with spring wheat. Conversely, lentil (Lens culinaris Medik.) and pea (Pisum sativum L.) averaged 27 mm and 48 mm less soil water than spring wheat to a 1.2-m soil depth, respectively. Observed differences in effective rooting depth for alternative crops carry important implications for wheat-based cropping systems.


2006 ◽  
Vol 57 (8) ◽  
pp. 857 ◽  
Author(s):  
Lindsay W. Bell ◽  
Megan H. Ryan ◽  
Geoff A. Moore ◽  
Mike A. Ewing

Dryland salinity in southern Australia has been caused by inadequate water use by annual crops and pastures. The purpose of this study was to compare the water use of annual pastures and Medicago sativa L. (lucerne) with Dorycnium hirsutum (L.) Ser., a potential new perennial forage species. The soil water dynamics under bare ground, annual legume-, lucerne-, and D. hirsutum-based pastures were compared at 2 sites in the low- (Merredin) and medium- (New Norcia) rainfall wheatbelt of Western Australia between September 2002 and February 2005. Soil under D. hirsutum was drier than under annual pastures by 8–23 mm in Year 1, 43–57 mm in Year 2, and 81 mm in Year 3. Lucerne used little additional water (<19 mm, n.s.) compared with D. hirsutum and profile soil water content was similar under both species throughout the experiment. At Merredin, annual pastures used water to a depth of 1.0 m, whereas under both D. hirsutum and lucerne in the first 3 years after establishment the successive maximum depth of water use was 1.0, 1.8, and 2.2 m. At New Norcia, additional soil water was extracted by lucerne and D. hirsutum at depths <1.0 m and no difference between treatments was detected below 1.0 m. Biomass of D. hirsutum pasture harvested in autumn contained minimal annual components and was 15–50% of that produced by lucerne- or annual legume-based pastures. D. hirsutum and lucerne plant density declined each summer (25–80%), but D. hirsutum density was lower than lucerne due to poorer establishment. Nonetheless, the comparable water use of lucerne and D. hirsutum suggests that D. hirsutum could make reductions in recharge similar to those of lucerne in the Western Australian wheatbelt.


2001 ◽  
Vol 52 (2) ◽  
pp. 263 ◽  
Author(s):  
A. M. Ridley ◽  
B. Christy ◽  
F. X. Dunin ◽  
P. J. Haines ◽  
K. F. Wilson ◽  
...  

Dryland salinity, caused largely by insufficient water use of annual crops and pastures, is increasing in southern Australia. A field experiment in north-eastern Victoria (average annual rainfall 600 mm) assessed the potential for lucerne grown in rotation with crops to reduce the losses of deep drainage compared with annual crops and pasture. Soil under lucerne could store 228 mm of water to 1.8 m depth. This compared with 84 mm under continuous crop (to 1.8 m depth), except in 1997–98 where crop dried soil by 162 mm. Between 1.8 and 3.25 m depth lucerne was able to create a soil water deficit of 78 mm. The extra water storage capacity was due to both the increased rooting depth and increased drying abiliy of lucerne within the root-zone of the annual species. Large drainage losses occurred under annuals in 1996 and small losses were calculated in 1997 and 1999, with no loss in 1998. Averaged over 1996–1999, drainage under annual crops was 49 mm/year (maximum 143 mm) and under annual pastures 35 mm/year (maximum 108 mm). When the extra soil water storage under lucerne was accounted for, no drainage was measured under this treatment in any year. Following 2 years of lucerne, drainage under subsequent crops could occur in the second crop. However, with 3 or 4 years of lucerne, 3–4 crops were grown before drainage loss was likely. Our calculations suggest that in this environment drainage losses are likely to occur under annual species in 55% of years compared with 6% of years under lucerne. In wet years water use of lucerne was higher than for crops due to lucerne’s ability to use summer rainfall and dry soil over the summer–autumn period. During the autumn–winter period crop water use was generally higher than under lucerne. The major period of increased soil water extraction under lucerne was from late spring to midsummer, with additional drying from deeper layers until autumn. Under both lucerne and crops, soil dried progressively from upper to lower soil layers. Short rotations of crops and lucerne currently offer the most practical promise for farmers in cropping areas in southern Australia to restore the water balance to a level which reduces the risk of secondary salinity.


1990 ◽  
Vol 115 (5) ◽  
pp. 712-714 ◽  
Author(s):  
Doyle A. Smittle ◽  
Melvin R. Hall ◽  
James R. Stansell

Sweetpotatoes [Ipomoea batatas (L.) Lam cv. Georgia Jet] were grown on two soil types in drainage lysimeters under controlled soil water regimes during 1982 and 1983. Water regimes consisted of irrigating the sweetpotatoes throughout growth when soil water tension at 23 cm exceeded 25, 50, or 100 kPa or by allowing a 100-kPa water stress before root enlargement, during early root enlargement, or throughout root enlargement. Water use and marketable yields were greater when sweetpotatoes were grown on a Tifton loamy sand (fine loamy, siliceous, thermic, Plinthitic Paleudult) than when grown on a Bonifay sand (loamy, siliceous, thermic, Grossarenic, Plinthitic Paleudult). Water use, marketable yield, and yield of U.S. #1 grade roots generally decreased when soil water tensions exceeded 25 kPa before irrigation, although soil water stress of 100 kPa during storage root development did not significantly affect yield. Regression equations are provided to describe the relationships of water use to plant age and to compute daily evapotranspiration: pan evaporation ratios (crop factors) for sweetpotatoes irrigated at 25, 50, and 100 kPa of soil water tension.


2001 ◽  
Vol 52 (2) ◽  
pp. 171 ◽  
Author(s):  
David Tennant ◽  
David Tennant ◽  
David Hall ◽  
David Hall

As part of a wider analysis of the potential role for lucerne in farming systems being developed for containing the spread of salinisation, we have reviewed information generated in Western Australia on opportunities for improving the water use of annual crops and pastures. Substantial increases in water use have been shown to be possible in a number of situations and rainfall environments. Best gains, of the order of 40–70 mm, were reported on deep sand and loamy sand soil types. These were achieved from selection of deep-rooted and longer growing crop and pasture species, and from amelioration of widespread traffic pans and subsoil acidity, and/or selection of tolerant species. On more widespread gradational and duplex soils, soil physical and chemical properties that restrict water infiltration and/or root penetration to depth limit the potential to increase water use. Increases in production and water use are still possible, depending on the permeability of the lower horizons of these soils and on rainfall distribution. At best, recorded increases on these soils were of the order of 5–15 mm in short season, low rainfall environments, and around 40 mm in long season, high rainfall environments. These increases in water use were not invariable. Increases in water use were not noted in dry years on all soils and in all years on shallow duplex soils with impermeable B horizons. Seasonality impacts on all outcomes and is a key issue on all soils and in all rainfall environments.


Sign in / Sign up

Export Citation Format

Share Document