Manipulation of ley pastures with herbicides to control take-all

1993 ◽  
Vol 44 (6) ◽  
pp. 1235 ◽  
Author(s):  
WJ MacLeod ◽  
GC MacNish ◽  
CW Thorn

The effect of grass-selective and broad-spectrum herbicides in pasture:wheat rotation experiments were studied from 1981 to 1986 at Esperance, W.A. The quantity of pasture and the proportion of grass present in the pasture phases were determined. Pastures were grazed by sheep. Incidence and severity of take-all and grain yield were measured in the wheat phases. The rotations studied were either a 2 year pasture: 1 year crop or 1 year pasture: 1 year crop. Herbicide treatments greatly decreased the grass content of pastures in the year of application, and this effect carried over to the second year in the 2 year pasture: 1 year crop rotation. Herbicide reduced total pasture yield in the year of application, but not in the year following. Herbicide treatment of pastures decreased the incidence and severity of take-all in the following wheat crop. Crop yields were increased following treated pastures and to a greater extent than could be exdained bv decreased take-all alone. Incidence of take-all depended primarily upon the quantity of grass in the previous pasture (5.4% incidence of take-all per 100 kg ha-1 grass dry matter in the previous pasture). Incidence of take-all was also related to the incidence of take-all in previous wheat crops and the quantity of grass in the pasture in the preceding two years.

Author(s):  
V. A. Petruk

The results of field studies for 2017 - 2019 are presented. yields of perennial grasses sown at different times of the growing season. Spring, summer, and winter sowing periods were compared. Alfalfa, clover, rump, and also their mixtures were sown in 2017 under the cover of barley. The value of the cover crop yield of spring and summer sowing periods did not differ significantly and amounted to 4-5 t / ha of absolutely dry matter. Winter barley crops have not formed. On average, over 2 years of use, the highest yields were observed in alfalfa-crust grass mixtures - 3.4 t / ha of absolutely dry matter. The lowest yield was obtained in the single-species seeding of the rump. Correspondingly, in the spring, summer and winter periods of sowing, the yield of rump was 1.6; 1.1 and 1.3 t / ha. With a late sowing period, the yield of perennial grasses is significantly lower compared to spring and summer. With winter sowing periods, the yield was the highest for grass stands of alfalfa and alfalfacrust grass mixture - 2.3 and 2.4 t / ha. It should be noted that in the second year of use, the yield by the sowing dates in single-species crops and grass mixtures is leveled. The winter crops of perennial grasses in the first year of use formed a low yield. Only in the second year (third year of life) the productivity of perennial grasses of winter sowing began to increase. Consequently, in the area under perennial grasses of the winter sowing period, during one growing season (the next year after sowing), the crop was not actually formed. Based on the data obtained, production can be recommended for spring and summer planting of perennial grasses under the cover of barley. The winter sowing period provides economically valuable crop yields only by the third year of life.


1996 ◽  
Vol 36 (6) ◽  
pp. 695 ◽  
Author(s):  
CP Horn ◽  
CJ Birch ◽  
RC Dalal ◽  
JA Doughton

Mean protein concentrations in wheat (Triticum aestivum) on the Darling Downs of southern Queensland have fallen below 10% in recent years, preventing farmers from obtaining 'Prime Hard' status (13.0%) for their wheat crop. Two management options, for improving this situation are applications of nitrogenous fertiliser in a wheat monoculture or inclusion of a legume in rotation with wheat. Long-term trials at Warra, on the western Darling Downs, resulted in the selection of chickpea (Cicer arietinum) as a useful grain legume cash crop with potential for improvement of its nitrogen (N) fixing ability through management. This 2-year study examined the effect of sowing time and tillage practice on dry matter yield, grain yield, N accumulation and N2 fixation in chickpea and the subsequent soil N balance. There were 3 sowing times during autumn and winter of each year using conventional tillage (CT). Zero tillage (ZT) was introduced after the first crop for all sowing times. Greater total dry matter yield and grain yield (4.18-5.95 and 1.63-2.25 t/ha, respectively) resulted from sowing in autumn or early winter than from sowing in late winter (3.39-3.86 and 0.97-1.22 kg/ha, respectively). The effects of tillage practice were variable, depending on growth stage. At harvest, ZT plots produced greater total dry matter yield (4.20 t/ha) and grain yield (1.94 t/ha) than CT plots (3.01 and 1.29 t/ha, respectively), whereas at the time of maximum dry matter, yield was higher under CT for autumn sowings, and under ZT for winter sowings.


2002 ◽  
Vol 42 (8) ◽  
pp. 1087 ◽  
Author(s):  
C. R. Kidd ◽  
G. M. Murray ◽  
J. E. Pratley ◽  
A. R. Leys

Winter cleaning is the removal of grasses from pasture using selective herbicides applied during winter. We compared the effectiveness of an early (June) and late (July) winter cleaning with an early spring herbicide fallow (September), spring (October) herbicide and no disturbance of the pasture on development of the root disease take-all in the subsequent wheat crop. Experiments were done at 5 sites in the eastern Riverina of New South Wales in 1990 and 1991. The winter clean treatments reduced soil inoculum of Gaeumannomyces graminis var. tritici (Ggt) compared with the other treatments at all sites as measured by a bioassay, with reductions from the undisturbed treatments of 52–79% over 5 sites. The winter clean treatments also significantly reduced the amount of take-all that developed in the subsequent wheat crop by between 52 and 83%. The early and late winter clean treatments increased the number of heads/m2 at 3 and 1 sites, respectively. Dry matter at anthesis was increased by the winter clean treatments at 3 sites. Grain yield was increased by the winter cleaning treatments over the other treatments at the 4 sites harvested, with yield increases of the early winter clean over the undisturbed treatment from 13 to 56%. The autumn bioassay of Ggt was positively correlated with spring take-all and negatively correlated with grain yield of the subsequent wheat crop at each site. However, there was a significant site and site × bioassay interaction so that the autumn bioassay could not be used to predict the amount of take-all that would develop.


Author(s):  
Yashvir S. Chauhan ◽  
Rex Williams

Mungbean [Vigna radiata (L.) Wilczek] in Australia has been transformed from a niche opportunistic crop into a major summer cropping option for dryland growers in the summer-dominant rainfall regions of Queensland and New South Wales. This transformation followed stepwise genetic improvements in both grain yields and disease resistance. For example, more recent cultivars such as ‘Crystal’, ‘Satin II’ and ‘Jade-AU‘  have provided up to a 20% yield advantage over initial introductions. Improved agronomic management to enable mechanised management and cultivation in narrow (<50 cm) rows has further promised to increase yields. Nevertheless, average yields achieved by growers for their mungbean crops remain less than 1 t/ha, and are much more variable than other broad acre crops.  Further increases in yield and crop resilience in mungbean are vital. In this review, opportunities to improve mungbean have been analysed at four key levels including phenology, leaf area development, dry matter accumulation and its partitioning into grain yield. Improving the prediction of phenology in mungbean may provide further scope for genetic improvements that better match crop duration to the characteristics of target environments. There is also scope to improve grain yields by increasing dry matter production through the development of more efficient leaf canopies. This may introduce additional production risks as dry matter production depends on the amount of available water, which varies considerably within and across growing regions in Australia. Improving crop yields by exploiting photo-thermal sensitivities to increase dry matter is likely a less risky strategy for these variable environments. Improved characterisation of growing environments using modelling approaches could also better define and identify the risks of major abiotic constraints. This would assist in optimising breeding and management strategies to increase grain yield and crop resilience in mungbean for the benefit of growers and industry.


2017 ◽  
Vol 7 (4) ◽  
pp. 473
Author(s):  
Diego Bortolini ◽  
Luís César Cassol ◽  
Jonatas Thiago Piva ◽  
Cristiam Bosi ◽  
Kassiano Felipe Rocha

The aim of this study was to evaluate the behavior of chemical properties and crop yields during five years after liming, in a consolidated no-tillage system area and indicate a base saturation index to serve as a criterion for recommendation. The experiment was conducted in a randomized complete block design with four repetitions, being the treatments the five lime doses (0, 2.4, 4.8, 7.2 and 9.6 Mg ha-1) applied and maintained on the soil surface. Soil chemical properties were evaluated in eight soil sampling, in the layers 0 to 0.025; 0.025 to 0.05; 0.05 to 0.10; 0.10 to 0.15; 0.15 to 0.20 and 0.20 to 0.40 m, besides crop grain yield (wheat, soybean and corn) and black oat dry matter yield, totaling five years of evaluation. The surface liming in no-tillage system increased the exchangeable magnesium and calcium contents, base saturation and soil pH and reduced the exchangeable aluminum content. The cumulative grain yield (six crops) and black oat dry matter yield (three crops) was not influenced by liming. These results suggested, from this study conditions, that the value of 50% of base saturation should be adopted as a criterion for liming for crops implanted under consolidated no-tillage systems.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 296 ◽  
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Hongtao Xing ◽  
Adam J. Lowrie ◽  
...  

Nitrification and urease inhibitors have been used to reduce nitrous oxide (N2O) emissions and increase nitrogen use efficiency in many agricultural systems. However, their agronomic benefits, such as the improvement of grain yield, is uncertain. A two-year field experiment was conducted to (1) investigate whether the use of 3,4-dimethylpyrazole phosphate (DMPP) or N-(n-butyl) thiophosphoric triamide (NBPT) can reduce N2O emissions and increase grain yield and (2) explore the financial benefit of using DMPP or NBPT in a rain-fed cropping system in south-eastern Australia. The experiment was conducted at Wagga Wagga, New South Wales, Australia with wheat (Triticum aestivum L.) in 2012 and canola (Brassica napus L.) in 2013. Results showed that urea coated with DMPP reduced the cumulative N2O emission by 34% for a wheat crop in 2012 (P < 0.05) and by 62% for a canola crop in 2013 (P < 0.05) compared with normal urea, but urea coated NBPT had no effect on N2O emission for the wheat crop in 2012. Neither nitrification nor urease inhibitors increased crop yields because the low rainfall experienced led to little potential for gross N loss through denitrification, leaching or volatilisation pathways. In such dry years, only government or other financial incentives for N2O mitigation would make the use of DMPP with applied N economically viable.


1989 ◽  
Vol 29 (1) ◽  
pp. 85 ◽  
Author(s):  
DR Coventry ◽  
HD Brooke ◽  
JF Kollmorgen ◽  
DJ Ballinger

The severity of take-all, caused by Gaeumannomyces graminis var. tritici, was measured with lime, rotation and flutriafol treatments in a long-term field experiment. The incidence of eyespot lesions caused by Pseudocercosporella herpotrichoides was also measured. Flutriafol reduced the number of plants with deadheads or no heads and resulted in 12-60% more grain yield. However flutriafol had no effect on the number of plants with eyespot lesions. The number of plants with deadheads or no heads was highest (50-53%) on the wheat which was a third consecutive crop and on soil which had been amended with 2.5 and 5.0 t/ha lime. Sowing wheat after a subterranean clover based pasture considerably reduced the number of deadheads. Control of annual grasses in the pasture by spray-topping further reduced deadheads and with this treatment and at nil and low lime there were 2-7% deadheads. The percentage of plants with eyespot lesions was higher with the continuous cropped wheat. Lime increased grain yield only where the disease incidence was low but had no effect on the percentage of eyespot lesions. This work demonstrates the importance of crop rotation for disease control, particularly where soils are limed to amend severe soil acidity; the value of controlling annual grasses in pasture in the year preceding wheat cropping; and the potential of fungicide treatment as a practical means for controlling take-all in field grown wheat.


2010 ◽  
Vol 16 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Stéphane De Cara ◽  
Florence Jacquet ◽  
Arnaud Reynaud ◽  
Gaël Goulevant ◽  
Marie-Hélène Jeuffroy ◽  
...  

1965 ◽  
Vol 5 (18) ◽  
pp. 310 ◽  
Author(s):  
RR Storrier

Water, in addition to the natural rainfall, was applied at five different stages of crop development to Heron wheat growing on a highly fertile soil. Dry matter yield, grain yield, the grain yield parameters (ear number, grain number per ear, weight per grain), and nitrogen content were measured. Changes in soil mineral nitrogen content as a consequence of water application and subsequent plant uptake were also studied. A single application of water at jointing, and treatments involving watering at all pre-anthesis stages during a period of moisture stress, increased straw and grain yields and floret development, as reflected in grain number per ear. Water applied after anthesis controlled to some degree the loss of dry matter and plant nitrogen exhibited by a maturing wheat crop. The number of tillers produced, the number surviving, or the number of ears were not increased by adding water at any stage of development. The increased grain yield that followed late additions of water was due to increases in the weight per grain. The addition of water during the jointing to milk stage increased the uptake of mineral nitrogen by the crop, to a depth of 30 inches. No increase in the mineralization of organic nitrogen was detected by soil analysis, but an approximate balance sheet indicated that mineralization, which was occurring during the growing season, was further stimulated by watering.


1987 ◽  
Vol 27 (3) ◽  
pp. 431 ◽  
Author(s):  
PR Dann ◽  
AG Thomas ◽  
RB Cunningham ◽  
PHR Moore

A field experiment near Yass, N.S.W., in 198 1 and 1982 compared several forms of deep tillage (loosening of the soil to depths from 15 to 60 cm, with little surface disturbance) following the application of various herbicides, on the growth and yield of wheat, rape, field peas and weeds. The deep tillage implements used were: Wallace Soil Reconditioning Unit, Domino Sub Tiller, and single tine ripper, cultivating to depths from 15 to 60 cm. The herbicides used were: glyphosate (Roundup at 1 L/ha), paraquat-diquat (Sprayseed at 2 L/ha) and paraquat-diquat (Sprayseed at 2 L/ha) plus dicamba (Banvel 200 at 0.4 Wha). A fallow treatment also was used in 1982. Crops, and weeds-which were a mixture of grass and broad-leaf species-responded more strongly to herbicide than to deep tillage treatments. At the rates used, paraquat-diquat plus dicamba controlled cereals more efficiently than did the other herbicides. The responses were generally increased growth of wheat and rape-field peas being much less responsive-and decreased growth of weeds. In 198 1, a year of average rainfall, herbicide (meaned over deep tillage treatments) increased wheat grain yield by 1.94 t/ha (1.8 1 v. 3.75 t/ha) and deep tillage (meaned over herbicide treatments) by 0.60 t/ha (2.81 v. 3.41 t/ha). In 1982, a year of below-average rainfall, fallow increased wheat grain yield by 1.67 t/ha (0.18 v. 1.85 t/ha), herbicide by 0.73 t/ha (0.18 v. 0.91 t/ha) and deep tillage by 0.36 t/ha (0.69 v. 1.05 t/ha). Covariance analyses indicated that, for all wheat crop parameters measured in 198 1, responses to both deep tillage and herbicide were strongly related to reduction in weed top growth, this effect being greater with the herbicide treatments than with the deep tillage treatments.


Sign in / Sign up

Export Citation Format

Share Document