scholarly journals Molecular Masers in Variable Stars

2002 ◽  
Vol 19 (4) ◽  
pp. 499-504 ◽  
Author(s):  
Georgij M. Rudnitskij

AbstractWhen a star with a mass of one to a few solar masses enters the red giant stage of its evolution, the radius of its atmosphere reaches several astronomical units. Pulsational instability is typical for this stage. Most stars become Mira-type or semiregular variables with light cycles of a few hundred days. Red giants lose mass at a rate M = 10−7−10−5M⊙ yr−1. Extensive gas–dust circumstellar envelopes form. These envelopes contain various molecular species. Some of these molecules (OH, H2O, SiO, HCN) manifest themselves in maser radio emission. Data on the H2O maser variability and its connection with the stellar brightness variations are discussed. In the H2O line circumstellar masers can be divided into ‘stable’ (showing persistent emission — R Aql, U Her, S CrB, X Hya) and ‘transient’ (appearing in the H2O line once per 10–15 stellar light cycles — R Leo, R Cas, U Aur). Physical mechanisms of the maser variability are discussed. The most probable process explaining the observed visual–H2O correlation is the influence of shock waves on the masing region. Usually it is assumed that shocks in Mira atmospheres are driven by stellar pulsations. Here an alternative explanation is proposed. If a star during its main sequence life possessed a planetary system, similar to the solar system, the planets will be embedded in a rather dense and hot medium. Effects of a planet revolving around a red giant at a short distance (inside its circumstellar envelope) are discussed. A shock produced by the supersonic motion of a planet can account for the correlated variability of the Hα line emission and H2O maser. If the planetary orbit is highly eccentric, then the connected Hα–H2O flare episodes may be explained by the periastron passage of the planet. New tasks for the upgraded ATCA are discussed.

2019 ◽  
Vol 492 (1) ◽  
pp. 1348-1362 ◽  
Author(s):  
Masaki Takayama ◽  
Yoshifusa Ita

ABSTRACT The origin of long secondary periods (LSPs) in red giant variables is unknown. We investigate whether stellar pulsations in red giants can explain the properties of the LSP variability. VIJHKs light curves obtained by OGLE and the IRSF/SIRIUS survey in the Small Magellanic Cloud are examined. The sample of oxygen-rich LSP stars shows evidence of a phase lag between the light curves of optical and near-IR band. The change in radius contributes to the bolometric change roughly half as much as the change in temperature, implying that the change in effective temperature plays an important role in the luminosity change associated with the LSPs. We have created numerical models based on the spherical harmonics to calculate the light amplitudes of dipole mode variability and have found that the models can roughly reproduce the amplitude–amplitude relations (e.g. (ΔI, ΔH)). The LSP variability can be reproduced by the dipole mode oscillations with temperature amplitude of ≲100 and ≲150 K for oxygen-rich stars and most carbon stars, respectively. Radial pulsation models are also examined and can reproduce the observed colour change of the LSPs. However, there is still an inconsistency in length between the LSP and periods of radial fundamental mode. On the other hand, theoretical period–luminosity relations of the dipole mode corresponding to so-called oscillatory convective mode were roughly consistent with observation. Hence, our result suggests that the observations can be consistent with stellar pulsations corresponding to oscillatory convective modes.


2002 ◽  
Vol 206 ◽  
pp. 266-273
Author(s):  
E. M. L. Humphreys

In recent years, it has become possible to trace rapid structural changes occurring in the extended atmospheres of red giant stars through VLBI monitoring of SiO masers. The observations reveal a complex picture. Firstly, material is predominantly outflowing, but also infalls towards the star, in a pulsating inner envelope periodically disrupted by shocks. Secondly, circular polarization measurements may indicate that the inner circumstellar envelope is permeated by a magnetic field strong enough to be of dynamical importance. Finally, towards a few stars, observations also show evidence for rotation of the SiO maser region. Current SiO maser models can reproduce many of the key features of circumstellar SiO maser emission, and have successfully predicted e.g. the infall of SiO masing gas and the observed spatial separation ofv= 1 andv= 2 43 GHz masers. However, both stellar hydrodynamical and maser codes need to increase in complexity in order to model fully these regions. In this review I will discuss the current developments in circumstellar SiO maser observations and models.


2019 ◽  
Vol 82 ◽  
pp. 189-211
Author(s):  
K. Belkacem

Solar-like oscillations are ubiquitous to low-mass stars from the main-sequence to the red-giant branch as demonstrated by the space-borne missions CoRoT and Kepler. Understanding the physical mechanisms governing their amplitudes as well as their behavior along with the star evolution is a prerequisite for interpreting the wealth of seismic data and for inferring stellar internal structure. In this paper, I discuss our current knowledge of mode amplitudes with particular emphasis on non-radial modes in red giants (hereafter mixed modes). Then, I will show how these modes permit to unveil the rotation of the inner-most layers of low-mass stars and how they put stringent constraints on the redistribution of angular momentum.


1989 ◽  
Vol 106 ◽  
pp. 321-338
Author(s):  
H. Olofsson

AbstractThe number of molecules detected at radio wavelengths in envelopes around red giants stands presently at 36. Among these OH and CO have proven to be the most useful for the study of the physical characteristics of a circumstellar envelope. The mass loss rate of the central star can be relatively accurately estimated and it appears possible to trace its evolution with time. Also fascinating objects in transition from the red giant phase to the planetary nebula phase are becoming observationally accessible.


2004 ◽  
Vol 193 ◽  
pp. 55-59
Author(s):  
L.L. Kiss ◽  
T.R. Bedding

AbstractWe present a period analysis of more then 23 000 red giants in the Large Magellanic Cloud observed by the OGLE-II microlensing project. Periods combined with the single-epoch 2MASS J H KS magnitudes revealed the complex distributions of stars in the period-luminosity plane. Besides four different sequences corresponding to different modes of pulsation in AGB stars, we also discovered two distinct and well-separated sequences below the tip of the Red Giant Branch, consisting of almost 10000 short-period and low-amplitude red variable stars. We propose that the majority are likely to be first ascent red giants, showing radial pulsations in the second and third overtone modes.


2004 ◽  
Vol 202 ◽  
pp. 115-117
Author(s):  
G. M. Rudnitskij

When a star with a mass of about 1 solar mass enters the red giant stage of its evolution, the radius of its atmosphere reaches several astronomical units. If the star possessed during its mainsequence life a planetary system, similar to the solar system, the planets will be embedded into a rather dense and hot medium. Effects of a planet revolving around a red giant at a short distance (inside its circumstellar envelope) are discussed. Systematic monitoring of the spectra of red giants may reveal periodicities in the emergence of shock-induced emission lines and thus to detect probable remnant planetary systems around these stars.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


2018 ◽  
Vol 616 ◽  
pp. A24 ◽  
Author(s):  
C Gehan ◽  
B. Mosser ◽  
E. Michel ◽  
R. Samadi ◽  
T. Kallinger

Context. Asteroseismology allows us to probe stellar interiors. In the case of red giant stars, conditions in the stellar interior are such as to allow for the existence of mixed modes, consisting in a coupling between gravity waves in the radiative interior and pressure waves in the convective envelope. Mixed modes can thus be used to probe the physical conditions in red giant cores. However, we still need to identify the physical mechanisms that transport angular momentum inside red giants, leading to the slow-down observed for red giant core rotation. Thus large-scale measurements of red giant core rotation are of prime importance to obtain tighter constraints on the efficiency of the internal angular momentum transport, and to study how this efficiency changes with stellar parameters. Aims. This work aims at identifying the components of the rotational multiplets for dipole mixed modes in a large number of red giant oscillation spectra observed by Kepler. Such identification provides us with a direct measurement of the red giant mean core rotation. Methods. We compute stretched spectra that mimic the regular pattern of pure dipole gravity modes. Mixed modes with the same azimuthal order are expected to be almost equally spaced in stretched period, with a spacing equal to the pure dipole gravity mode period spacing. The departure from this regular pattern allows us to disentangle the various rotational components and therefore to determine the mean core rotation rates of red giants. Results. We automatically identify the rotational multiplet components of 1183 stars on the red giant branch with a success rate of 69% with respect to our initial sample. As no information on the internal rotation can be deduced for stars seen pole-on, we obtain mean core rotation measurements for 875 red giant branch stars. This large sample includes stars with a mass as large as 2.5 M⊙, allowing us to test the dependence of the core slow-down rate on the stellar mass. Conclusions. Disentangling rotational splittings from mixed modes is now possible in an automated way for stars on the red giant branch, even for the most complicated cases, where the rotational splittings exceed half the mixed-mode spacing. This work on a large sample allows us to refine previous measurements of the evolution of the mean core rotation on the red giant branch. Rather than a slight slow-down, our results suggest rotation is constant along the red giant branch, with values independent of the mass.


Sign in / Sign up

Export Citation Format

Share Document