scholarly journals A FUSE View of Winds from the Central Stars of Planetary Nebulae

2010 ◽  
Vol 27 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Martín A. Guerrero ◽  
Gerardo Ramos-Larios ◽  
Derck Massa

AbstractSince the IUE satellite produced a vast collection of high-resolution UV spectra of the central stars of planetary nebulae (CSPNe), there has not been any further systematic study of the stellar winds of these stars. The high spectral resolution, sensitivity and large number of archival observations in the FUSE archive allow the study of the stellar winds of CSPNe in the far-UV domain where lines of species spanning a wide excitation range can be observed. We present here a preliminary analysis of the P Cygni profiles of a sample of ∼60 CSPNe observed by FUSE. P Cygni profiles providing evidence for fast stellar winds with velocities between 200 and 4300 km s−1 have been found in 40 CSPNe. In many cases, this is the first time that fast stellar winds have been reported for these planetary nebulae (PNe). A detailed study of these far-UV spectra is on-going.

2003 ◽  
Vol 209 ◽  
pp. 177-186 ◽  
Author(s):  
A.W.A. Pauldrach ◽  
T.L. Hoffmann ◽  
R.H. Méndez

Recent advances in the modelling of stellar winds driven by radiation pressure make it possible to fit many wind-sensitive features in the UV spectra of hot stars, opening the way for a hydrodynamically consistent determination of stellar radii, masses, and luminosities from the UV spectrum alone. It is thus no longer necessary to assume a theoretical mass–luminosity relation. As the method has been shown to work for massive O stars, we are now able to test predictions from the post-AGB evolutionary calculations quantitatively for the first time. Here we present the first rather surprising consequences of using the new generation of model atmospheres for the analysis of a sample of central stars of planetary nebulae.


2015 ◽  
Vol 51 (56) ◽  
pp. 11305-11308 ◽  
Author(s):  
Sven Thorwirth ◽  
Ralf I. Kaiser ◽  
Kyle N. Crabtree ◽  
Michael C. McCarthy

The fundamental silaisocyanides HCCNSi, HC4NSi, and NCNSi have been characterized at high spectral resolution for the first time. All three chains are good candidates for radio astronomical detection.


2003 ◽  
Vol 209 ◽  
pp. 405-411
Author(s):  
George Sonneborn

The Far Ultraviolet Spectroscopic Explorer (FUSE)> satellite provides a unique opportunity to obtain high-resolution far-UV spectra of a wide variety of astronomical objects, including planetary nebulae. Most FUSE observations of PNe to date have concentrated on the hot central star, providing a very effective way to study the atmosphere of the central star, the surrounding nebula through the absorption features from circumstellar gas. FUSE has found evidence of hot molecular hydrogen in several planetary nebulae, including M27 and BD+30° 3639. Central star spectra also reveal new information about stellar winds, mass loss, and photospheric abundances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua-Tian Tu ◽  
An-Qing Jiang ◽  
Jian-Ke Chen ◽  
Wei-Jie Lu ◽  
Kai-Yan Zang ◽  
...  

AbstractUnlike the single grating Czerny–Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.


1997 ◽  
Vol 180 ◽  
pp. 214-215 ◽  
Author(s):  
Gail M. Conway ◽  
You-Hua Chu

X-ray emission from planetary nebulae (PNe) may originate from two sources: central stars which are 100,000–200,000 K will emit soft X-rays, and shocked fast stellar winds reaching 106–107 K will emit harder X-rays. The former are point sources, while the shocked winds are expected to be extended sources emitting continuously out to the inner wall of the visible nebular shell (Weaver et al. 1977; Wrigge & Wendker 1996).


1990 ◽  
Vol 115 ◽  
pp. 94-109 ◽  
Author(s):  
Jeffrey L. Linsky

AbstractI provide examples of how high-resolution x-ray spectra may be used to determine the temperature and emission measure distributions, electron densities, steady and transient flow velocities, and location of active regions in stellar coronae. For each type of measurement I estimate the minimum spectral resolution required to resolve the most useful spectral features. In general, high sensitivity is required to obtain sufficient signal-to-noise to exploit the high spectral resolution. Although difficult, each measurement should be achievable with the instrumentation proposed for AXAF.


1993 ◽  
Vol 155 ◽  
pp. 91-91
Author(s):  
R.W. Tweedy

A high-resolution IUE spectral atlas of central stars of planetary nebulae and hot white dwarfs has been produced (part of Tweedy, 1991, PhD thesis from the University of Leicester, UK), and examples from it are shown here. It has been sorted into an approximate evolutionary sequence, based on published spectroscopic analyses, from the cool 28,000K young central star He 2–138, through the hot objects like NGC 7293 and NGC 246 at 90,000K and 130,000K respectively, down to 40,000K DA white dwarfs like GD 2, which is the chosen cutoff for this selection. Copies of a revised version of this atlas, which will include more recent spectroscopic information and also white dwarfs down to 35,000K – to include the Si III object GD 394 – will be sent to anyone who requests one.


Author(s):  
Dr.Vani. K ◽  
Anto. A. Micheal

This paper is an attempt to combine high resolution panchromatic lunar image with low resolution multispectral lunar image to produce a composite image using wavelet approach. There are many sensors that provide us image data about the lunar surface. The spatial resolution and spectral resolution is unique for each sensor, thereby resulting in limitation in extraction of information about the lunar surface. The high resolution panchromatic lunar image has high spatial resolution but low spectral resolution; the low resolution multispectral image has low spatial resolution but high spectral resolution. Extracting features such as craters, crater morphology, rilles and regolith surfaces with a low spatial resolution in multispectral image may not yield satisfactory results. A sensor which has high spatial resolution can provide better information when fused with the high spectral resolution. These fused image results pertain to enhanced crater mapping and mineral mapping in lunar surface. Since fusion using wavelet preserve spectral content needed for mineral mapping, image fusion has been done using wavelet approach.


1984 ◽  
Vol 79 ◽  
pp. 497-497
Author(s):  
Donald N.B. Hall

The major advantages of the FTS technique are (1) multiplexing, (2) throughput, (3) instrumental profile, (4) stability of frequency calibration, and (5) spectrophotometry accuracy. The multiplex advantage is realized only if one is detector noise limited for the signal within an individual spectral-resolution element. At optical and thermal infrared wavelengths, this is only the case at high spectral resolution (≥ 50000) for modern detectors. By the time the VLT is operating one expects this to also be the case in the 1- to 2.5-micron region. At resolutions ≥ 50000 there are severe problems matching dispersive spectrographs to the VLT aperture, whereas existing FTS instruments already have adequate through-put to match to fields of a few arcsec with a VLT. When the other advantages are considered, the FTS is the instrument of choice for high-resolution (≥ 50000) spectroscopy of absorption features with a VLT. Foreseeable astrophysical applications include observations of interstellar and circumstellar features and of fully resolved profiles of photospheric and planetary lines.


Sign in / Sign up

Export Citation Format

Share Document