The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study

2005 ◽  
Vol 53 (7) ◽  
pp. 663 ◽  
Author(s):  
Lindsay B. Hutley ◽  
Ray Leuning ◽  
Jason Beringer ◽  
Helen A. Cleugh

Global concern over rising atmospheric CO2 concentrations has led to a proliferation of studies of carbon cycling in terrestrial ecosystems. Associated with this has been widespread adoption of the eddy covariance method to provide direct estimates of mass and energy exchange between vegetation surfaces and the atmosphere. With the eddy covariance method, fast-response instruments (10–20Hz) are typically mounted above plant canopies and the fluxes are calculated by correlating turbulent fluctuations in vertical velocity with fluctuations in various scalars such as CO2, water vapour and temperature. These techniques allow the direct and non-destructive measurement of the net exchange of CO2 owing to uptake via photosynthesis and loss owing to respiration, evapotranspiration and sensible heat. Eddy covariance measurements have a high temporal resolution, with fluxes typically calculated at 30-min intervals and can provide daily, monthly or annual estimates of carbon uptake or loss from ecosystems. Such measurements provide a bridge between ‘bottom-up’ (e.g. leaf, soil and whole plant measures of carbon fluxes) and ‘top-down’ approaches (e.g. satellite remote sensing, air sampling networks, inverse numerical methods) to understanding carbon cycling. Eddy covariance data also provide key measurements to calibrate and validate canopy- and regional-scale carbon balance models. Limitations of the method include high establishment costs, site requirements of flat and relatively uniform vegetation and problems estimating fluxes accurately at low wind speeds. Advantages include spatial averaging over 10–100ha and near-continuous measurements. The utility of the method is illustrated in current flux studies at ideal sites in northern Australia. Flux measurements spanning 3years have been made at a mesic savanna site (Howard Springs, Northern Territory) and semi-arid savanna (Virginia Park, northern Queensland). Patterns of CO2 and water vapour exchange at diurnal, seasonal and annual scales are detailed. Carbon dynamics at these sites are significantly different and reflect differences in climate and land management (impacts of frequent fire and grazing). Such studies illustrate the utility of the eddy covariance method and its potential to provide accurate data for carbon accounting purposes. If full carbon accounting is implemented, for ideal sites, the eddy covariance method provides annual estimates of carbon sink strength accurate to within 10%. The impact of land-use change on carbon sink strength could be monitored on a long-term basis and provide a valuable validation tool if carbon trading schemes were implemented.

2018 ◽  
Vol 15 (13) ◽  
pp. 4245-4269 ◽  
Author(s):  
Rebecca J. Oliver ◽  
Lina M. Mercado ◽  
Stephen Sitch ◽  
David Simpson ◽  
Belinda E. Medlyn ◽  
...  

Abstract. The capacity of the terrestrial biosphere to sequester carbon and mitigate climate change is governed by the ability of vegetation to remove emissions of CO2 through photosynthesis. Tropospheric O3, a globally abundant and potent greenhouse gas, is, however, known to damage plants, causing reductions in primary productivity. Despite emission control policies across Europe, background concentrations of tropospheric O3 have risen significantly over the last decades due to hemispheric-scale increases in O3 and its precursors. Therefore, plants are exposed to increasing background concentrations, at levels currently causing chronic damage. Studying the impact of O3 on European vegetation at the regional scale is important for gaining greater understanding of the impact of O3 on the land carbon sink at large spatial scales. In this work we take a regional approach and update the JULES land surface model using new measurements specifically for European vegetation. Given the importance of stomatal conductance in determining the flux of O3 into plants, we implement an alternative stomatal closure parameterisation and account for diurnal variations in O3 concentration in our simulations. We conduct our analysis specifically for the European region to quantify the impact of the interactive effects of tropospheric O3 and CO2 on gross primary productivity (GPP) and land carbon storage across Europe. A factorial set of model experiments showed that tropospheric O3 can suppress terrestrial carbon uptake across Europe over the period 1901 to 2050. By 2050, simulated GPP was reduced by 4 to 9 % due to plant O3 damage and land carbon storage was reduced by 3 to 7 %. The combined physiological effects of elevated future CO2 (acting to reduce stomatal opening) and reductions in O3 concentrations resulted in reduced O3 damage in the future. This alleviation of O3 damage by CO2-induced stomatal closure was around 1 to 2 % for both land carbon and GPP, depending on plant sensitivity to O3. Reduced land carbon storage resulted from diminished soil carbon stocks consistent with the reduction in GPP. Regional variations are identified with larger impacts shown for temperate Europe (GPP reduced by 10 to 20 %) compared to boreal regions (GPP reduced by 2 to 8 %). These results highlight that O3 damage needs to be considered when predicting GPP and land carbon, and that the effects of O3 on plant physiology need to be considered in regional land carbon cycle assessments.


2021 ◽  
Author(s):  
Lutz Beckebanze ◽  
Zoé Rehder ◽  
David Holl ◽  
Charlotta Mirbach ◽  
Christian Wille ◽  
...  

Abstract. Arctic permafrost landscapes have functioned as a global carbon sink for millennia. These landscapes are very heterogeneous, and the omnipresent waterbodies are a carbon source within them. Yet, only a few studies focus on the impact of these waterbodies on the landscape carbon budget. We compare carbon dioxide and methane fluxes from small waterbodies to fluxes from the surrounding tundra using eddy covariance measurements from a tower located between a large pond and semi-terrestrial vegetated tundra. When taking the open-water areas of small waterbodies into account, the carbon dioxide sink strength of the landscape was reduced by 11 %. While open-water methane emissions were similar to the tundra emissions, some parts of the studied pond's shoreline exhibited much higher emissions, underlining the high spatial variability of methane emissions. We conclude that gas fluxes from small waterbodies can contribute significantly to the carbon budget of arctic tundra landscapes. Consequently, changes in arctic hydrology and the concomitant changes in the waterbody distribution may substantially impact the overall carbon budget of the Arctic.


2019 ◽  
Vol 16 (17) ◽  
pp. 3397-3423 ◽  
Author(s):  
David Holl ◽  
Verónica Pancotto ◽  
Adrian Heger ◽  
Sergio Jose Camargo ◽  
Lars Kutzbach

Abstract. The near-pristine bog ecosystems of Tierra del Fuego in southernmost Patagonia have so far not been studied in terms of their current carbon dioxide (CO2) sink strength. CO2 flux data from Southern Hemisphere peatlands are scarce in general. In this study, we present CO2 net ecosystem exchange (NEE) fluxes from two Fuegian bog ecosystems with contrasting vegetation communities. One site is located in a glaciogenic valley and developed as a peat moss-dominated raised bog, and the other site is a vascular plant-dominated cushion bog located at the coast of the Beagle Channel. We measured NEE fluxes with two identical eddy covariance (EC) setups at both sites for more than 2 years. With the EC method, we were able to observe NEE fluxes on an ecosystem level and at high temporal resolution. Using a mechanistic modeling approach, we estimated daily NEE models to gap fill and partition the half-hourly net CO2 fluxes into components related to photosynthetic uptake (gross primary production, GPP) and to total ecosystem respiration (TER). We found a larger relative variability of annual NEE sums between both years at the moss-dominated site. A warm and dry first year led to comparably high TER sums. Photosynthesis was also promoted by warmer conditions but less strongly than TER with respect to absolute and relative GPP changes. The annual NEE carbon (C) uptake was more than 3 times smaller in the warm year. Close to the sea at the cushion bog site, the mean temperature difference between both observed years was less pronounced, and TER stayed on similar levels. A higher amount of available radiation in the second observed year led to an increase in GPP (5 %) and NEE (35 %) C uptake. The average annual NEE-C uptake of the cushion bog (-122±76 gm-2a-1, n=2) was more than 4 times larger than the average uptake of the moss-dominated bog (-27±28 gm-2a-1, n=2).


2014 ◽  
Vol 7 (2) ◽  
pp. 553-578 ◽  
Author(s):  
H. Brenot ◽  
A. Walpersdorf ◽  
M. Reverdy ◽  
J. van Baelen ◽  
V. Ducrocq ◽  
...  

Abstract. The Mediterranean hydrometeorological observatory Cévennes-Vivarais (OHM-CV) coordinates hydrometeorological observations (radars, rain gauges, water level stations) on a regional scale in southeastern France. In the framework of OHM-CV, temporary GPS measurements have been carried out for 2 months in autumn 2002, when the heaviest rainfall are expected. These measurements increase the spatial density of the existing permanent GPS network, by adding three more receivers between the Mediterranean coast and the Cévennes-Vivarais range to monitor maritime source of water vapour flow feeding the precipitating systems over the Cévennes-Vivarais region. In addition, a local network of 18 receivers covered an area of 30 by 30 km within the field of view of the meteorological radar. These regional and local networks of permanent and temporary stations are used to monitor the precipitable water vapour (PWV) with high temporal resolution (15 min). Also, the dense local network provided data which have been inverted using tomographic techniques to obtain the 3-D field of tropospheric water vapour content. This study presents methodological tests for retrieving GPS tropospheric observations from dense networks, with the aim of assessing the uncertainties of GPS retrievals. Using optimal tropospheric GPS retrieval methods, high resolution measurements of PWV on a local scale (a few kilometres) are discussed for rain events. Finally, the results of 3-D fields of water vapour densities from GPS tomography are analysed with respect to precipitation fields derived from a meteorological radar, showing a good correlation between precipitation and water vapour depletion areas.


2020 ◽  
Author(s):  
Gillian Simpson ◽  
Carole Helfter ◽  
Caroline Nichol ◽  
Tom Wade

<p>Peatlands are terrestrial carbon sinks of global significance, storing an estimated one-third of global soil carbon. Net Ecosystem Exchange (NEE) of carbon dioxide (CO<sub>2</sub>) can however vary substantially on seasonal and inter-annual timescales, with some peatlands switching from a sink to a source of CO<sub>2</sub>. Complex and sometimes competing processes, such as meteorology and phenology, regulate a peatland’s net carbon sink strength. Understanding seasonal and inter-annual variability in NEE requires studying these environmental controls at multiple spatial and temporal scales. The role of vegetation in regulating NEE can be particularly difficult to ascertain at the finer timescales (e.g. seasonal) and at sites with abundant plant diversity, non-uniform distribution and complex micro-topography, such as peatlands. Vegetation surveys are traditionally conducted every few years and, because of this, they might not capture the shorter-term variations that can result from meteorological anomalies such as drought. New technologies, such as Unmanned Aerial Vehicles (UAVs), offer novel opportunities to improve the temporal resolution and spatial coverage of traditional vegetation survey approaches. UAVs are a more flexible, often cheaper alternative to satellite products, which can be used to collect data at the sub-centimetre scale. Such high resolution is particularly valuable in peatland environments, which typically display strong heterogeneity at the micro-site level (< 0.5 m). We employ UAV surveys with a Parrot Sequoia multispectral camera to map vegetation and track its phenology using vegetation indices such as the Normalised Difference Vegetation Index (NDVI) over the course of two growing seasons at a temperate Scottish peatland. By combining this multispectral data with in-situ NEE measurements (closed chambers and eddy-covariance) and meteorological data, this project aims to quantify the impact of weather and phenology on carbon balance at the site. An improved understanding of these two drivers of peatland carbon cycling will allow for better prediction of the impact of climate change at the site.</p>


2019 ◽  
Author(s):  
David Holl ◽  
Verónica Pancotto ◽  
Adrian Heger ◽  
Sergio Jose Camargo ◽  
Lars Kutzbach

Abstract. The near-pristine bog ecosystems of Tierra del Fuego in southernmost Patagonia have so far not been studied in terms of their current carbon dioxide (CO2) sink strength. CO2 flux data from southern hemisphere peatlands is scarce in general. In this study, we present CO2 net ecosystem exchange (NEE) fluxes from two Fuegian bog ecosystems with contrasting vegetation communities. One site is located in a glaciogenic valley and developed as a peat moss-dominated raised bog, the other site is a vascular plant-dominated cushion bog located at the coast of the Beagle Channel. We measured NEE fluxes with two identical eddy covariance (EC) setups at both sites for more than two years. With the EC method, we were able to observe NEE fluxes on ecosystem level and at high temporal resolution. Using a mechanistic modeling approach, we estimated daily NEE models to gap-fill and partition the half-hourly net CO2 fluxes into components related to photosynthetic uptake (gross primary production, GPP) and to total ecosystem respiration (TER). We found a larger relative variability of annual NEE sums between both years at the moss-dominated site. A warm and dry first year led to comparably high TER sums. Photosynthesis was also promoted by warmer conditions but less strong than TER with respect to absolute and relative GPP changes. The annual NEE-C uptake was more than three times smaller in the warm year. Close to the sea at the cushion bog site, the mean temperature difference between both observed years was less pronounced, and TER stayed on similar levels. A higher amount of available radiation in the second observed year led to an increase of GPP (5 %) and NEE (35 %) carbon (C) uptake. The average annual NEE-C uptake of the cushion bog (−122 ± 76 g m−2 a−1, n = 2) was more than four times larger than the average uptake of the moss-dominated bog (−27 ± 28 g m−2 a−1, n = 2).


2021 ◽  
Vol 9 ◽  
Author(s):  
Luis A. Morales-Rincon ◽  
Andrea J. Hernandez ◽  
Nubia S. Rodriguez-Hernandez ◽  
Rodrigo Jimenez

Savanna ecosystems cover ∼20% of the total land surface and account for ∼30% of the terrestrial global net primary production. They are also highly sensitive to climate change, since their carbon (C) sink capacity may decline under rising temperatures and irregular rainfall. These responses, which will define the future climate role of the savanna ecosystems, are currently not well understood. The Colombian Orinoco River basin (“Llanos”) natural savannas are being rapidly converted to agriculture. The impact of this transformation on C fluxes and accumulation is not clear. It is thus urgent to understand the Llanos natural savanna ecosystem services, including their C cycle and underlying mechanisms. Here we report and analyze 2 years of measurements of carbon dioxide fluxes from a naturally-restored (secondary) Llanos High Plains savanna ecosystem, using eddy covariance. Meteorological conditions, particularly rainfall, were quite variable during the measurement period. During the first year of measurements, the savanna was a weak carbon source (35 gC m−2), while during the second year, the system was a comparatively strong carbon sink (−273 gC m−2), despite receiving less rainfall than during the first year. As expected, the savanna net ecosystem exchange (NEE) was highly dependent on global solar radiation, soil water content, and ecosystem respiration. We found that after ∼10 days of nominal drought, i.e., with less than ∼5 mm/day of precipitation, the NEE became highly dependent on drought duration. The ecosystem reached a critical condition of low photosynthetic activity after ∼60 days of nominal drought. Based on these findings, we developed and applied a simple standard meteorology-based model that properly reproduced the observations. Our results indicate that a shift to a climate with similar total precipitation but split into extreme dry and wet seasons might eventually suppress the savanna C uptake capacity.


2013 ◽  
Vol 6 (6) ◽  
pp. 9513-9578
Author(s):  
H. Brenot ◽  
A. Walpersdorf ◽  
M. Reverdy ◽  
J. van Baelen ◽  
V. Ducrocq ◽  
...  

Abstract. The Mediterranean hydrometeorological observatory Cévennes-Vivarais (OHM-CV) coordinates hydrometeorological observations (radars, rain gauges, water level stations) on a regional scale in South-Eastern France. In the framework of OHM-CV, temporary GPS measurements have been carried out for 2 months in autumn 2002, when the heaviest rainfall are expected. These measurements increase the spatial density of the existing permanent GPS network, by adding three more receivers between the Mediterranean coast and the Cévennes-Vivarais range to monitor maritime source of water vapour flow feeding the precipitating systems over the Cévennes-Vivarais region. In addition, a local network of 18 receivers covered an area of 30 by 30 km within the field of view of the meteorological radar. These regional and local networks of permanent and temporary stations are used to monitor the precipitable water vapour (PWV) with high temporal resolution (15 min). Also, the dense local network provided data which have been inversed using tomographic techniques to obtain the 3-D field of tropospheric water vapour content. This study presents methodological tests for retrieving GPS tropospheric observations from dense networks, with the aim of assessing the uncertainties of GPS retrievals. Using the optimal tropospheric GPS retrieval methods, high resolution measurements of PWV on a local scale (a few kilometres) are discussed for rain events. Finally, the results of 3-D fields of water vapour densities from GPS tomography are analysed with respect to precipitation fields derived from a meteorological radar, showing a good correlation between precipitation and water vapour depletion areas.


2020 ◽  
Author(s):  
Natalia Kowalska ◽  
Georg Jocher ◽  
Ladislav Šigut ◽  
Marian Pavelka

<p>Since the eddy covariance (EC) method became a key method for measurements of the energy and greenhouse gas exchange between ecosystems and the atmosphere, a large number of studies was conducted to understand the mechanisms driving the carbon exchange in forest ecosystems. In recent years, case studies further focused on testing and validating the applicability of the EC technique above forest ecosystems, also assessing the spatial and temporal variability of sub canopy fluxes. These studies led to the conclusion that there is a high probability of overestimating the forest carbon sink strength with EC measurements above the forest canopy only, as these measurements may miss respiration components from within and below the canopy due to insufficient mixing across the canopy. Additional below canopy EC measurements were suggested to tackle this problem and to get information about potential decoupling between below and above forest canopy air masses as well as potentially missing respiration components in the above canopy derived signal.</p><p>The overall goal of the study here is to derive an as detailed as possible understanding of the carbon exchange in Lanžhot floodplain forest with the help of concurrent EC measurements below and above the forest canopy. Lanžhot floodplain forest is situated 6.5 km north of the confluence of the Morava and Thaya rivers in Czech Republic (48.6815483 N, 16.9463317 E). The long-term average annual precipitation at this site is around 517 mm and the mean annual temperature is 9.5 °C. The average groundwater level is -2.7 m. Since a long time flooding occurs here very rarely, the last flooding event was in 2013. In addition, the site is hydrologically managed. Consequently, the water regime of the site changed over the years and represents nowadays relatively dry conditions for such type of ecosystem.</p><p>To reach our research goal we evaluate different single- and two-level filtering strategies of the above canopy derived carbon exchange values and the impact of these filterings on the annual ecosystem carbon exchange rates. Our hypothesis is that conventional single-level EC flux filtering strategies like the u<sub>*</sub>-filtering might not be sufficient to fully capture the carbon exchange of the studied floodplain forest ecosystem. We further hypothesize that additional below canopy EC measurements are mandatory to achieve unbiased forest carbon exchange values with the EC technique.</p>


2020 ◽  
Vol 13 (3) ◽  
pp. 1447-1465 ◽  
Author(s):  
Marcus Striednig ◽  
Martin Graus ◽  
Tilmann D. Märk ◽  
Thomas G. Karl

Abstract. We describe and test a new versatile software tool for processing eddy covariance and disjunct eddy covariance flux data. We present an evaluation based on urban non-methane volatile organic compound (NMVOC) measurements using a proton transfer reaction quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF-MS) at the Innsbruck Atmospheric Observatory. The code is based on MATLAB® and can be easily configured to process high-frequency, low-frequency and disjunct data. It can be applied to a wide range of analytical setups for NMVOC and other trace gas measurements, and is tailored towards the application of noisy data, where lag time corrections become challenging. Several corrections and quality control routines are implemented to obtain the most reliable results. The software is open source, so it can be extended and adjusted to specific purposes. We demonstrate the capabilities of the code based on a large urban dataset collected in Innsbruck, Austria, where three-dimensional winds and ambient concentrations of NMVOCs and auxiliary trace gases were sampled with high temporal resolution above an urban canopy. Concomitant measurements of 12C and 13C isotopic NMVOC fluxes allow testing algorithms used for determination of flux limits of detection (LOD) and lag time analysis. We use the high-frequency NMVOC dataset to generate a set of disjunct data and compare these results with the true eddy covariance method. The presented analysis allows testing the theory of disjunct eddy covariance (DEC) in an urban environment. Our findings confirm that the disjunct eddy covariance method can be a reliable tool, even in complex urban environments when fast sensors are not available, but that the increase in random error impedes the ability to detect small fluxes due to higher flux LODs.


Sign in / Sign up

Export Citation Format

Share Document