Regulation of Plant Phenolic Synthesis: From Biochemistry to Ecology and Evolution

1996 ◽  
Vol 44 (6) ◽  
pp. 613 ◽  
Author(s):  
M Matsuki

The molecular and biochemical regulation of phenolic synthesis can be summarised as: (1) carbohydrates are partitioned in a manner ensuring growth; (2) carbohydrates are available for phenolic synthesis mainly during cell differentiation and after leaf maturation as the 'overflow'; (3) synthesis of a particular phenolic compound is specific to cell type and developmental stage; and (4) synthesis of certain phenolic compounds can be induced, independently of cell type, by factors such as wounding, microbial infection, and UV light. Recent advances in the understanding of the regulation of phenolic synthesis raises the question as to whether between-site and temporal variation in the amount and type of plants phenolics is due mostly to selection pressure by herbivores. Interdisciplinary studies by biochemists and ecologists are needed for a better understanding of the regulation of phenolic synthesis and plant-herbivore interactions mediated by secondary metabolites.

2021 ◽  
Vol 22 (3) ◽  
pp. 1442
Author(s):  
Sukhman Singh ◽  
Ishveen Kaur ◽  
Rupesh Kariyat

There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.


2018 ◽  
Author(s):  
Wei Huang ◽  
Valentin Gfeller ◽  
Matthias Erb

AbstractVolatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighboring plants. However, little is known about the effects of root VOCs on plant-herbivore interactions. The spotted knapeed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of C. stoebe root VOCs on primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant-mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of T. officinale to C. stoebe root VOCs does not affect the accumulation of defensive secondary metabolites, but modulates carbohydrate and total protein levels in T. officinale roots. Furthermore, VOC exposure increases M. melolontha growth on T. officinale plants. Exposure of T. officinale to a major C. stoebe root VOC, the sesquiterpene (E)-β-caryophyllene, partially mimics the effect of the full root VOC blend on M. melolontha growth. Thus, releasing root VOCs can modify plant-herbivore interactions of neighboring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Zhijiang Yan ◽  
Kaitlin McKernan ◽  
Tommy O’Haren ◽  
...  

AbstractCell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF chromatin remodeling complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identify BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we show that BAF and MLL4 reciprocally regulate each other’s binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic pioneer transcription factor C/EBPβ without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.


1999 ◽  
Vol 31 (3) ◽  
pp. 307-314 ◽  
Author(s):  
A. P. Torzilli ◽  
P. A. Mikelson ◽  
J. D. Lawrey

AbstractIt has been suggested that the host specificity exhibited by some lichenicolous fungi depends on their ability to tolerate the secondary chemistry of potential host lichens. For example, the lichen parasite Marchandiomyces corallinus is able to degrade the tissues of the lichen Flavoparmelia baltimorensis irrespective of the presence or absence of endogenous phenolic compounds. In contrast, the degradation of tissues from the lichen Lasallia papulosa is suppressed when endogenous phenolics are not removed. We have investigated the physiological basis of this inhibition in order to understand more about how lichen chemistry infiuences host preference in lichenicolous fungi. Results showed that the secondary compounds from L. papulosa inhibit the overall growth of M. corallimis, but not the catalytic activity of its tissue-degrading polysaccharidases. This effect is different from that shown by another lichen parasite, Nectria parmeliae, where lichen compounds specifically inhibited polysaccharidase activity. Compared with the compounds of L. papulosa, the endogenous phenolics of F. baltimorensis inhibited the growth of M. corallimis substantially less and exhibited little or no inhibition of polysaccharidases. For M. corallimis, host preference appears to be associated with physiological adaptation to the chemistry of F. baltimorensis.


Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 471-480 ◽  
Author(s):  
Gerardo M Oresti ◽  
Jesús García-López ◽  
Marta I Aveldaño ◽  
Jesús del Mazo

Male germ cell differentiation entails the synthesis and remodeling of membrane polar lipids and the formation of triacylglycerols (TAGs). This requires fatty acid-binding proteins (FABPs) for intracellular fatty acid traffic, a diacylglycerol acyltransferase (DGAT) to catalyze the final step of TAG biosynthesis, and a TAG storage mode. We examined the expression of genes encoding five members of the FABP family and two DGAT proteins, as well as the lipid droplet protein perilipin 2 (PLIN2), during mouse testis development and in specific cells from seminiferous epithelium.Fabp5expression was distinctive of Sertoli cells and consequently was higher in prepubertal than in adult testis. The expression ofFabp3increased in testis during postnatal development, associated with the functional differentiation of interstitial cells, but was low in germ cells.Fabp9, together withFabp12, was prominently expressed in the latter. Their transcripts increased from spermatocytes to spermatids and, interestingly, were highest in spermatid-derived residual bodies (RB). Both Sertoli and germ cells, which produce neutral lipids and store them in lipid droplets, expressedPlin2. Yet, whileDgat1was detected in Sertoli cells,Dgat2accumulated in germ cells with a similar pattern of expression asFabp9. These results correlated with polyunsaturated fatty acid-rich TAG levels also increasing with mouse germ cell differentiation highest in RB, connecting DGAT2 with the biosynthesis of such TAGs. The age- and germ cell type-associated increases inFabp9,Dgat2, andPlin2levels are thus functionally related in the last stages of germ cell differentiation.


2017 ◽  
Vol 106 (1) ◽  
pp. 347-356 ◽  
Author(s):  
Wei Huang ◽  
Elias Zwimpfer ◽  
Maxime R. Hervé ◽  
Zoe Bont ◽  
Matthias Erb

Sign in / Sign up

Export Citation Format

Share Document