Synthesis and Characterization of New Palladium(II) Complexes Containing N-Alkylamino-3,5-diphenylpyrazole Ligands. Crystal Structure of [PdCl(L2)](BF4) {L2 = Bis[2-(3,5-diphenyl-1-pyrazolyl)ethyl]ethylamine}

2009 ◽  
Vol 62 (5) ◽  
pp. 475 ◽  
Author(s):  
Gemma Aragay ◽  
Josefina Pons ◽  
Jordi García-Antón ◽  
Ángeles Mendoza ◽  
Guillermo Mendoza-Díaz ◽  
...  

In this paper, the synthesis of two new N,N′,N-ligands, bis[2-(3,5-diphenyl-1-pyrazolyl)ethyl]amine (L1) and bis[2-(3,5-diphenyl-1-pyrazolyl)ethyl]ethylamine (L2) is reported. These ligands form complexes with the formula [PdCl(N,N′,N)]Cl when reacting with [PdCl2(CH3CN)2] in a 1:1 metal-to-ligand molar ratio. Treatment of these ligands with [PdCl2(CH3CN)2] in a 1:1 metal-to-ligand molar ratio in the presence of AgBF4 or NaBF4 gave [PdCl(N,N′,N)](BF4) complexes. These PdII complexes were characterized by elemental analyses, conductivity measurements, mass spectrometry, and IR, 1H, and 13C{1H} NMR spectroscopies. The X-ray structure of the complex [PdCl(L2)](BF4) has been determined. The metal atom is coordinated by two azine nitrogen atoms and one amine nitrogen atom of the aminopyrazole ligand. The distorted square planar coordination is completed by one chlorine atom. In this complex, intermolecular π–π stacking interactions are present.

2017 ◽  
Vol 13 (2) ◽  
pp. 1-15
Author(s):  
Rita Bhattacharjee Virupaiah Gayathri

A series of palladium(II) halo complexes of the types [PdX 2 L 2 ].nH 2 O {n = 0, X = Cl, L = L 2 , L 4 and L 5 ; X = Br, L = L 2 ; n = 1, X = Cl, L = L 1 and L 3 } and Pd 2 X 4 L 3 [X = Br, L = L 1 , L 3 , L 4   and L 5 ] were prepared where L is 6-R-5,6- dihydrobenzoimidazo quinazoline (R-Diq; where R = ethyl: L 1 / n or i-propyl: L 2 , L 3 / n or i-butyl: L 4 , L 5 ) and characterized by elemental analyses, conductivity measurements, TGA, infrared, electronic, NMR and mass spectral techniques. Based    on these studies monomeric/dimeric structure with a square planar geometry around the metal ion was proposed for all the complexes. Some of the complexes were investigated for anti-microbial activity.


2005 ◽  
Vol 60 (4) ◽  
pp. 389-392 ◽  
Author(s):  
Ali Morsali

Complexes [Bi(phen)2(NO3)(NCS)2(MeOH)] and [Bi(phen)2(NO3)2(NCS)] have been synthesized and characterized by their IR spectra and elemental analyses. The structure of the [Bi(phen)2(NO3)(NCS)2(MeOH)] complex has been confirmed by X-ray crystallography. The Bi atoms are unsymmetrically eight-coordinated, N6O2. The arrangement of the ligands does not show a gap in the coordination geometry around the Bi(III) ion, indicating that its lone pair of electrons is not active. The thiocyanate ligands are coordinated to the bismuth atom via the nitrogen atom. There is π-π stacking interactions between the parallel aromatic rings belonging to adjacent chains


2007 ◽  
Vol 62 (8) ◽  
pp. 1095-1101 ◽  
Author(s):  
J. Nicolas Roedel ◽  
Roman Bobka ◽  
Max Pfister ◽  
Martin Rieger ◽  
Bernd Neumann ◽  
...  

The reactions of anhydrous metal chlorides MCl2 [M = Co(II), Zn(II), Pd(II)] with aziridines (az) in CH2Cl2 at r. t. in a 1 : 5 molar ratio afforded the bis(aziridine)dichloro complexes M(az)2Cl2. After purification, all complexes were fully characterized. The solid state structures were determined using single crystal X-ray diffraction, and showed tetrahedral coordination geometries for the Co(II) and Zn(II) centers and trans-configurated square planar geometries for Pd(II).


2018 ◽  
Vol 73 (12) ◽  
pp. 999-1003 ◽  
Author(s):  
Mohammad Hakimi ◽  
Homeyra Rezaei ◽  
Keyvan Moeini ◽  
Heidar Raissi ◽  
Vaclav Eigner ◽  
...  

AbstractA new cyclotriphosphazene, 2,2,4,4,6,6-hexakis (o-tolylamono)-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinine (MPAP), was prepared using microwave irradiation and identified by elemental analysis, FT-IR, Raman, 31P NMR spectroscopy, and single-crystal X-ray diffraction. In the crystal, in addition to hydrogen bonds, the network is further stabilized by inter- and intramolecular π–π stacking interactions between aromatic rings.


2021 ◽  
Vol 68 (1) ◽  
pp. 102-108
Author(s):  
Yu-Mei Hao

A mononuclear copper(II) complex, [CuL] (1), and a phenolato-bridged trinuclear zinc(II) complex, [Zn3Cl2L2(DMF)2] (2), where L is the deprotonated form of N,N’-bis(4-bromosalicylidene)propane-1,3-diamine (H2L), have been prepared and characterized by elemental analyses, IR and UV-Vis spectroscopy, and single crystal X-ray diffraction. The Cu atom in complex 1 is in square planar coordination, while the terminal and central Zn atoms in complex 2 are in square pyramidal and octahedral coordination, respectively. The antibacterial activities of the complexes have been tested on the bacteria Staphylococcus aureus and Escherichia coli, and the yeast Candida parapsilosis.


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


1993 ◽  
Vol 46 (11) ◽  
pp. 1817 ◽  
Author(s):  
TB Lu ◽  
N Tang ◽  
MY Tan ◽  
Y Liu ◽  
KB Yu ◽  
...  

Complexes of the lighter lanthanide nitrates with stilbeno-15-crown-5 (L) have been prepared in ethyl acetate. These new complexes with the general formula Ln (NO3)3.L.H2O ( Ln = La, Ce , Pr, Nd ) have been characterized by means of elemental analyses, i.r . spectra, 1H n.m.r. spectra and conductivity measurements. The crystal structure of La(NO3)3.L has been determined by X-ray methods, and refined to a residual R 0.0513 for 4937 independent reflections with I ≥ 1.5σ(I). It crystallizes in the monoclinic space group P21/a with a 16.090(5), b 15.654(8), c 22.687(2) Ǻ, β 93.96(4)°, V 5700(4)Ǻ3, and Z 8. There are two independent La(NO3)3.L monomers in one asymmetric unit; in each the coordination number is 11.


2020 ◽  
Vol 58 (1) ◽  
pp. 3-18 ◽  
Author(s):  
Jonathan B. Schneider ◽  
David M. Jenkins

ABSTRACT Formation of the feldspathoid sodalite (Na6Al6Si6O24·2NaCl) by reaction of nepheline (NaAlSiO4) with NaCl-bearing brines was investigated at 3 and 6 kbar and at a constant temperature of 750 °C to determine the brine concentration at which sodalite forms with variation in pressure. The reaction boundary was located by reaction-reversal experiments in the system NaAlSiO4–NaCl–H2O at a brine concentration of 0.16 ± 0.08 XNaCl [= molar ratio NaCl/(NaCl + H2O)] at 3 kbar and at a brine concentration of 0.35 ± 0.03 XNaCl at 6 kbar. Characterization of the sodalite using both X-ray diffraction and infrared spectroscopy after treatment in these brines indicated no obvious evidence of water or hydroxyl incorporation into the cage structure of sodalite. The data from this study were combined with earlier results by Wellman (1970) and Sharp et al. (1989) at lower (1–1.5 kbar) and higher (7–8 kbar) pressures, respectively, on sodalite formation from nepheline and NaCl which models as a concave-down curve in XNaCl – P space. In general, sodalite buffers the concentration of neutral aqueous NaCl° in the brine to relatively low values at P < 4 kbar, but NaCl° increases rapidly at higher pressures. Thermochemical modeling of these data was done to determine the activity of the aqueous NaCl° relative to a 1 molal (m) standard state, demonstrating very low activities (<0.2 m, or 1.2 wt.%) of NaCl° at 3 kbar and lower, but rising to relatively high activities (>20 m, or 54 wt.%) of NaCl° at 6 kbar or higher. The results from this study place constraints on the concentration of NaCl° in brines coexisting with nepheline and sodalite and, because of the relative insensitivity of this reaction to temperature, can provide a convenient geobarometer for those localities where the fluid compositions that formed nepheline and sodalite can be determined independently.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2019 ◽  
Vol 807 ◽  
pp. 1-10 ◽  
Author(s):  
Guang Xi Xu ◽  
Xiao Tong Sang ◽  
Jing Bao Lian ◽  
Nian Chu Wu ◽  
Xue Zhang

Eu3+ and Tb3+ ions singly activated Gd2O2S hollow spheres have been successfully synthesized via solvothermal method by using Gd (NO3)3, Eu (NO3)3, Tb (NO3)3 and thiourea as raw materials. Detailed characterization of the as-prepared samples were obtained by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), transmission electronic microscope (TEM) and photoluminescence (PL) spectroscopy. The results demonstrate that at 220 oC for 24 h, the molar ratio of thiourea/Gd3+ has no significant impact on the phase composition of Gd2O2S products. With the reaction time increased from 6 h to 24 h, the morphology of Gd2O2S samples changed from ellipsoidal to near-spheroidal structure, but still remained hollow structure. PL results show that the strongest emission peaks for Gd2O2S:Eu3+ and Gd2O2S:Tb3+ samples were centered at 625 nm and 545 nm, corresponding to the 5D0→7F2 transition of Eu3+ ions and 5D4→7F5 transition of Tb3+ ions, respectively. The quenching concentrations for Eu3+ and Tb3+ ions were 12% and 6%, which can be attributed to the exchange interaction for Eu3+ and Tb3+ ions, respectively.


Sign in / Sign up

Export Citation Format

Share Document