Comparative Study of Different Electrochemical Techniques for the Preparation of Supported Pt-Ru Catalysts

2019 ◽  
Vol 72 (5) ◽  
pp. 347
Author(s):  
Rodrigo M. Castagna ◽  
Juan Manuel Sieben ◽  
Andrea E. Alvarez ◽  
Marta M. E. Duarte

Bimetallic Pt-Ru particles supported on glassy carbon rods were synthesized by simultaneous electrochemical deposition. Pt-Ru alloy particles were deposited from a dilute aqueous acid solution of chloroplatinic acid and ruthenium trichloride by different electrochemical techniques: (i) coulostatic deposition at constant potential; (ii) double potentiostatic steps; and (iii) multiple cycles of potentiostatic pulses. It was found that particle size distribution, and the morphology and composition of the deposits strongly depend on the deposition method. Scanning electron microscopy images showed the presence of agglomerates with diameters in the submicrometre scale composed of nano-sized particles. The catalysts prepared by multiple cycles of potentiostatic pulses exhibited better activity for methanol oxidation and enhanced tolerance to CO poisoning compared with those prepared by the other techniques. This behaviour could be associated with the structure containing a high number of defects of the particles and a higher ruthenium content in the solid solution.

Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


2010 ◽  
Vol 192 (7) ◽  
pp. 1751-1760 ◽  
Author(s):  
Esther Julián ◽  
Mónica Roldán ◽  
Alejandro Sánchez-Chardi ◽  
Oihane Astola ◽  
Gemma Agustí ◽  
...  

ABSTRACT The aggregation of mycobacterial cells in a definite order, forming microscopic structures that resemble cords, is known as cord formation, or cording, and is considered a virulence factor in the M ycobacterium tuberculosis complex and the species M ycobacterium marinum. In the 1950s, cording was related to a trehalose dimycolate lipid that, consequently, was named the cord factor. However, modern techniques of microbial genetics have revealed that cording can be affected by mutations in genes not directly involved in trehalose dimycolate biosynthesis. Therefore, questions such as “How does mycobacterial cord formation occur?” and “Which molecular factors play a role in cord formation?” remain unanswered. At present, one of the problems in cording studies is the correct interpretation of cording morphology. Using optical microscopy, it is sometimes difficult to distinguish between cording and clumping, which is a general property of mycobacteria due to their hydrophobic surfaces. In this work, we provide a new way to visualize cords in great detail using scanning electron microscopy, and we show the first scanning electron microscopy images of the ultrastructure of mycobacterial cords, making this technique the ideal tool for cording studies. This technique has enabled us to affirm that nonpathogenic mycobacteria also form microscopic cords. Finally, we demonstrate that a strong correlation exists between microscopic cords, rough colonial morphology, and increased persistence of mycobacteria inside macrophages.


1989 ◽  
Vol 35 (12) ◽  
pp. 1081-1086 ◽  
Author(s):  
Byron F. Johnson ◽  
L. C. Sowden ◽  
Teena Walker ◽  
Bong Y. Yoo ◽  
Gode B. Calleja

The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.Key words: flocculation, budding yeast, fission yeast, scanning, transmission.


2009 ◽  
Vol 1187 ◽  
Author(s):  
Jakob R Eltzholtz ◽  
Marie Krogsgaard ◽  
Henrik Birkedal

AbstractBiology has evolved several strategies for attachment of sedentary animals. In the bivalves, byssi abound and the best known example being the protein-based byssus of the blue mussel and other Mytilidae. In contrast the bivalve Anomia sp. has a single calcified thread. The byssus is hierarchical in design and contains several different types of structures as revealed by scanning electron microscopy images. The mechanical properties of the byssus are probed by nanoindentation. It is found that the mineralized part of the byssus is very stiff with a reduced modulus of about 67 GPa and a hardness of ˜3.7 GPa. This corresponds to a modulus roughly 20% smaller than that of pure calcite and a hardness that is about 20% larger than pure calcite. The results reveal the importance of microstructure on mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document