Effects of sowing date and cultivar on radiation use efficiency in durum wheat

2011 ◽  
Vol 62 (1) ◽  
pp. 39 ◽  
Author(s):  
Simona Bassu ◽  
Francesco Giunta ◽  
Rosella Motzo

Field studies were conducted on durum wheat to assess the effects of three sowing dates and three cultivars with different flowering times on the stability of the biomass accumulated per unit of solar radiation intercepted that is usually considered constant in crop-simulation models. Aboveground dry matter varied widely, with minimum values ranging from 292 g m–2 at booting to 384 g m–2 at maturity and maximum values ranging from 1452 g m–2 at booting to 2565 g m–2 at maturity. The cumulative intercepted radiation at each phenological stage decreased as sowing was delayed. The leaf area index (LAI) ranged from 1.5 to 7.6 at booting and from 0.1 to 4.6 at the beginning of grain filling across treatments. Sowing dates and cultivars did not differ significantly in extinction coefficient values (0.38 ± 0.015). The estimated radiation use efficiency (eRUE) differed significantly between the two seasons (1.16 ± 0.09 g MJ–1 in 2000 and 1.61 ± 0.08 g MJ–1 in 2001) due to waterlogging in 2000 but did not differ among sowing dates and cultivars within each season. Under optimal growing conditions, eRUE of different cultivars of durum wheat were relatively stable across sowing dates, confirming their reliability for crop modelling in durum wheat as well as in bread wheat. Although eRUE was constant over the whole crop cycle regardless of the sowing date, it was lower at pre-anthesis in the latest sowing, in parallel with the variation in LAI. This study indicates that pre-anthesis eRUE may vary with sowing date under some conditions, depending on the variation in LAI in the period before anthesis.

1989 ◽  
Vol 20 (1) ◽  
pp. 51-64 ◽  
Author(s):  
J.R. Kiniry ◽  
C.A. Jones ◽  
J.C. O'toole ◽  
R. Blanchet ◽  
M. Cabelguenne ◽  
...  

2007 ◽  
Vol 4 (4) ◽  
pp. 647-656 ◽  
Author(s):  
M. Jung ◽  
G. Le Maire ◽  
S. Zaehle ◽  
S. Luyssaert ◽  
M. Vetter ◽  
...  

Abstract. Three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC) were evaluated with respect to their ability to simulate large-scale climate related trends in gross primary production (GPP) across European forests. Simulated GPP and leaf area index (LAI) were compared with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange and LAI measurements along a temperature gradient ranging from the boreal to the Mediterranean region. The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR) and radiation use efficiency (RUE), the overestimation of GPP for the boreal coniferous forests appears to be primarily related to too high simulated LAI - and thus light absorption (APAR) – rather than too high radiation use efficiency. We cannot attribute the tendency of the models to underestimate GPP in the water limited region to model structural deficiencies with confidence. A likely dry bias of the input meteorological data in southern Europe may create this pattern. On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr) but differences are apparent for different ecosystem types. In terms of absolute values, we find the agreement between site based GPP estimates and simulations acceptable when we consider uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data. Continental to global data-model comparison studies should be fostered in the future since they are necessary to identify consistent model bias along environmental gradients.


2009 ◽  
Vol 44 (10) ◽  
pp. 1211-1218 ◽  
Author(s):  
Paulo Jorge de Oliveira Ponte de Souza ◽  
Aristides Ribeiro ◽  
Edson José Paulino da Rocha ◽  
José Renato Bouça Farias ◽  
Renata Silva Loureiro ◽  
...  

The objective of this work was to evaluate the efficiency of soybean (Glycine max) in intercepting and using solar radiation under natural field conditions, in the Amazon region, Brazil. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, Pará state, during 2007 and 2008. The radiation use efficiency (RUE) was obtained from the ratio between the above-ground biomass production and the intercepted photosynthetically active radiation (PAR) accumulated to 99 and 95 days after sowing, in 2007 and 2008, respectively. Climatic conditions during the experiment were very distinct, with reduction in rainfall in 2007, which began during the soybean mid-cycle, due to the El Niño phenomenon. An important reduction in the leaf area index and biomass production was observed during 2007. Under natural field conditions in the Amazon region, the values of RUE were 1.46 and 1.99 g MJ-1 PAR in the 2007 and 2008 experiments, respectively. The probable reason for the differences found between these years might be associated to the water restriction in 2007 coupled with the higher air temperature and vapor pressure deficit, and also to the increase in the fraction of diffuse radiation that reached the land surface in 2008.


2011 ◽  
Vol 62 (10) ◽  
pp. 840 ◽  
Author(s):  
E. Chakwizira ◽  
D. J. Moot ◽  
W. R. Scott ◽  
A. L. Fletcher ◽  
S. Maley

Inadequate phosphorus (P) supply at crop establishment can reduce dry matter (DM) accumulation. A field experiment quantified the effects of banded or broadcast P fertiliser (0, 20, 40 or 60 kg P/ha) applied at establishment to moderately fertile soils on growth and development of ‘Regal’ kale (Brassica oleracea var. acephala L.) crops. DM yield increased from 8710 to ~11 400 kg/ha by the addition of P fertiliser but was unaffected by the method of P application. The control crops accumulated 630 kg DM/100 degree-day (degree-day-accumulated heat available for crop growth) compared with ~800 kg/100 degree-day for the P-fertilised crops. The yield response to P was caused by an increased rate of development of leaf area index (LAI) and consequently earlier canopy closure that led to higher accumulated radiation interception (RIcum). The maximum LAI for the control crops was 3.80 or 24% lower than for fertilised crops. At the final harvest total RIcum for P-fertilised crops was 22% higher than the 592 MJ/m2 for the control, and this accounted for 80% of their yield differences. Leaf appearance rates were unaffected by P supply, with a common phyllochron of 109 degree-day. There was a consistent relationship between light interception and LAI, with a critical LAI of 3.40, extinction coefficient of 0.90 and radiation-use efficiency of 1.56 g/MJ photosynthetically active radiation. Overall, these results support a starter P application of at least 20 kg P/ha at establishment to maximise yields for kale crops when initial soil Olsen P levels ranged from 9 to 17 mg/kg soil.


2018 ◽  
Vol 33 (4) ◽  
pp. 579-587
Author(s):  
Denis de Pinho Sousa ◽  
Paulo Jorge Oliveira Ponte de Souza ◽  
Vivian Dielly da Silva Farias ◽  
Hildo Giuseppe Caldas Nunes ◽  
Denílson Pontes Ferreira ◽  
...  

Abstract This study aims to determine the cowpea efficiency in absorbing and using solar radiation according to different irrigation depths under the climatic conditions of the northeast of Pará State. The experiment was carried out on 2014 and 2016 in an experimental design of randomized blocks, which consisted in six blocks with four treatments, in which different irrigation depths the reproductive phase were applied, as follows: T100, T50, T25 e T0, that corresponded to 100%, 50%, 25% e 0% of the crop evapotranspiration, respectively. The absorbed photosynthetically active radiation, leaf area index (LAI), total aerial dry matter (TADM) and grain yield were measured. The extinction coefficient (k) was obtained by nonlinear regression between the fraction of absorbed PAR (fPARinter) and the LAI. The radiation use efficiency (RUE) was calculated by linear regression between the TADM and the accumulated absorbed PAR. The water deficit imposed by the treatments had a significant influence on the LAI, TADM and cowpea yields. The water deficit did not significantly influenced k – it ranged between 0.83 for T100 and 0.70 for T0. The RUE showed significant behaviors regarding the treatments with adequate water supply and treatments under water deficit, ranging from 2.23 to 1.64 g·MJ-1, respectively.


2012 ◽  
Vol 150 (5) ◽  
pp. 595-602 ◽  
Author(s):  
E. D. GONIAS ◽  
D. M. OOSTERHUIS ◽  
A. C. BIBI

SUMMARYPlant growth regulators are widely used in cotton production to improve crop management. Previous research has demonstrated changes in crop growth, dry matter (DM) partitioning and lint yield of cotton after the application of plant growth regulators. However, no reports are available demonstrating the effect of plant growth regulators on light interception and radiation use efficiency (RUE). Field studies were conducted in Fayetteville, Arkansas, USA in 2006 and 2007. RUE was estimated for the period between the pinhead square stage (PHS) of growth and 3 weeks after first flower (FF+3) from plots receiving three applications of the nitrophenolate and mepiquat chloride with Bacillus cereus plant growth regulators (Chaperone™) at 7·19 g a.i./ha and Pix Plus® at 41·94 g a.i./ha compared with an untreated control. No differences between the Chaperone treatment and the untreated control were found in the present study. However, Pix Plus significantly reduced plant height (both 2006 and 2007) and leaf area (2007 only), and altered the canopy structure of the crop as recorded by increased values of canopy extinction coefficient. Although DM accumulation was found not to be affected by plant growth regulator treatments, RUE was significantly increased after Pix Plus application, by 33·2%. RUE was increased because less light was intercepted by the Pix Plus treatment for the same biomass production, and this is probably a result of changes in photosynthetic capacity of the leaves and changes in light distribution throughout the canopy.


2007 ◽  
Vol 4 (2) ◽  
pp. 1353-1375 ◽  
Author(s):  
M. Jung ◽  
G. Le Maire ◽  
S. Zaehle ◽  
S. Luyssaert ◽  
M. Vetter ◽  
...  

Abstract. We evaluate three terrestrial biosphere models (LPJ, Orchidee, Biome-BGC) with respect to their capacity to simulate climate related trends in gross primary production (GPP) of forests in Europe. We compare simulated GPP and leaf area index (LAI) with GPP estimates based on flux separated eddy covariance measurements of net ecosystem exchange (NEE) and LAI measurements along a gradient in mean annual temperature from the boreal to the Mediterranean.The three models capture qualitatively the pattern suggested by the site data: an increase in GPP from boreal to temperate and a subsequent decline from temperate to Mediterranean climates. The models consistently predict higher GPP for boreal and lower GPP for Mediterranean forests. Based on a decomposition of GPP into absorbed photosynthetic active radiation (APAR) and radiation use efficiency (RUE), the overestimation of GPP for the boreal zone appears to be primarily related to too high simulated LAI - and thus light absorption (APAR) – rather than too high radiation use efficiency. On average, the models compare similarly well to the site GPP data (RMSE of ~30% or 420 gC/m2/yr) but differences are apparent for different ecosystem types. Given uncertainties about the accuracy in model drivers, a potential representation bias of the eddy covariance sites, and uncertainties related to the method of deriving GPP from eddy covariance measurements data, we find the agreement between site data and simulations acceptable, providing confidence in simulations of GPP for European forests.


Author(s):  
M. A. Awal ◽  
M. O. Gani

Aim: Solar radiation is the unique source of energy which drives the photosynthesis of green plants for producing biomass to living being. Use efficiency of solar radiation to produce biomass has been quantified for many crops in field condition but no study is undertaken for mustard although it is an important oil seed crop in the world as well as in Bangladesh. Therefore, the present study was undertaken to evaluate the radiation-use efficiency of mustard crop. Study Design: The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates. Place and Duration of Study: The experiment was conducted in the Crop Botany Field Laboratory, Bangladesh Agricultural University, Mymensingh during the winter season extended from November 2011 to March 2012. Methodology: Treatments comprised six mustard varieties viz. BINAsarisha-3, BINAsarisha-4, BINAsarisha-5, BINAsarisha-6, BINAsarisha-7 and BINAsarisha-8 which were grown following standard cultivation techniques to optimize the growth and development. Radiation measurements along the growing season were carried out during solar noon on some sunny days with a Radiometer connected to a 1 m long Line Quantum Sensor. Results: Mustard varieties showed wide variation in terms of plant height, branch number, leaf area index (LAI), dry matter (DM) accumulation, yield components and yield and radiation interception and use. BINAsarisha-6 showed better performance on the aforesaid traits followed by BINAsarisha-7 while lower performance was observed in BINAsarisha-3 and BINAsarisha-4. The higher seed yield (2.41 t ha-1) was obtained in the BINAsarisha-6, the variety also showed higher radiation-use efficiency, RUE (3.75 g MJ-1 PAR) whereas the lower seed yield (about 2.1 t ha-1) was observed in the BINAsarisha-3 or BINAsarisha-4, the varieties also showed the lower RUE (<3 g MJ-1 PAR) which indicate that the higher accumulation of DM in BINAsarisha-6 variety as influenced by higher utilization of solar radiation effectively constitute the seed yield. The temporal RUE showed much fluctuated pattern in all the varieties and higher RUEs were observed at the later part of the crop growth. The variety BINAsarisha-6 also showed the higher seasonal mean RUE whereas BINAsarisha-4 showed the lower. Conclusion: Mustard varieties showed wide variation in growth, yield and radiation interception and use. Higher biomass production as well as higher seed yield is associated with higher utilization of solar radiation.


Agromet ◽  
2008 ◽  
Vol 22 (2) ◽  
pp. 108
Author(s):  
Gusti Rusmayadi ◽  
. Handoko ◽  
Yonny Koesmaryono ◽  
Didiek Hadjar Goenadi

Plant growth interpretation in term of accumulated intercepted solar radiation and the radiation use efficiency (RUE) was used to study the growth and analysis of Jatropha (Jatropha curcas L.). A number of crop growth simulation models have been developed using the RUE concept to predict crop growth and yield in various environments. These models generally calculate daily biomass production as the product of the quantity of radiation intercepted and RUE. This research was carried out to quantify the RUE, biomass and leaf area index on Jatropha under rainfall condition, four levels of nitrogen fertilizer (N) and three population densities (P) planted twice. The experiments used a systematic Nelder fan design with 9 spokes and 4 – 5 rings were conducted at SEAMEO-BIOTROP field experiment in 2007. Data from the first experiment were used for parameterization and calibration and the second experiment data for model validation. Values of RUE were determined by nitrogen fertilizer and plant density. Based on parameterization, we found that RUE for prediction above ground biomass accumulation of Jatropha were 0.94 (r=0.83) g MJ-1 to 1.3 (r=0.75) g MJ-1. Validation between model prediction and field experimental data showed that model can simulate crop growth and development of Jatropha.


Sign in / Sign up

Export Citation Format

Share Document