scholarly journals Potential legume alternatives to fallow and wheat monoculture for Mediterranean environments

2015 ◽  
Vol 66 (2) ◽  
pp. 113 ◽  
Author(s):  
Scott Christiansen ◽  
John Ryan ◽  
Murari Singh ◽  
Serkan Ates ◽  
Faik Bahhady ◽  
...  

Growing populations and intensification of land-use in West Asia and North Africa (WANA) are prompting a need for viable alternatives to fallow and cereal mono-cropping systems common in dry areas of this region. The sustainability and economic viability of such rotations can only be assessed accurately by using long-term trials. A two-course rotation experiment was established in 1986 in north-eastern Syria, comparing yields and profitability of wheat (Triticum aestivum L.) when grown after wheat, fallow, a grazed mixture of medic species (Medicago spp.) and common vetch (Vicia sativa L.) cut for hay, over 10 growing seasons. Lentils (Lens culinaris Medik.) were introduced into the experiment in 1990. On average over the course of the experiment, the highest wheat grain yields were obtained following fallow (2.57 t ha–1), the lowest in continuous wheat (1.14 t ha–1), and intermediate following medic and vetch (1.90–2.01 t ha–1). Compared with wheat grown after fallow, wheat grain yields declined following vetch, medic and lentils in only three of the 10 seasons, which were drier than average. Yields of wheat after lentils were generally lower (2.22 t ha–1) than after vetch (mean 2.56 t ha–1) and after medic (2.40 t ha–1). Inclusion of grain legumes in the rotations boosted profits considerably because of their high grain prices and valuable straw. Replacing fallow with vetch for hay production increased the average gross margin by US$126 ha–1 year–1, and growing vetch for hay in rotation with wheat produced greater profit than continuous wheat, by $254 ha–1 year–1. The wheat–vetch-for-grain and wheat–lentil rotations were especially profitable, at least twice as profitable as wheat–fallow and three times continuous wheat. This experiment adds to the growing body of field data in Syria and in Australia showing that forage and grain legumes are excellent alternatives to wheat–fallow rotation and continuous wheat production in areas that experience a Mediterranean-type climate, and help support more efficient and sustainable cropping systems.

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1213 ◽  
Author(s):  
Geoffrey C. Anderson ◽  
Shahab Pathan ◽  
James Easton ◽  
David J. M. Hall ◽  
Rajesh Sharma

Surface (0–10 cm) and subsoil (soil layers below 10 cm) acidity and resulting aluminum (Al) toxicity reduce crop grain yields. In South Western Australia (SWA), these constraints affect 14.2 million hectares or 53% of the agricultural area. Both lime (L, CaCO3) and gypsum (G, CaSO4) application can decrease the toxic effect of Al, leading to an increase in crop grain yields. Within the region, it is unclear if G alone or the combined use of L and G has a role in alleviating soil acidity in SWA, due to low sulfate S (SO4–S) sorption properties of the soil. We present results from three experiments located in the eastern wheatbelt of SWA, which examined the short-term (ST, 2 growing seasons), medium-term (MT, 3 growing seasons), and long-term (LT, 7 growing seasons over 10 years) effects of L and G on grain yield and plant nutrient concentrations. Despite the rapid leaching of SO4–S and no self-liming impact, it was profitable to apply G, due to the significant ST grain yield responses. The grain yield response to G developed even following relatively dry years, but declined over time due to SO4–S leaching. At the LT experimental site had received no previous L application, whereas, at the ST and MT sites, L had been applied by the grower over the previous 5–10 years. For the LT site, the most profitable treatment for wheat (Triticum aestivum L.) grain yield, was the combined application of 4 t L ha−1 with 2 t G ha−1. At this site, the 0–10 cm soil pHCaCl2 was 4.6, and AlCaCl2 was greater than 2.5 mg kg−1 in the 10–30 cm soil layer. In contrast, at the ST and MT sites, the pHCaCl2 of 0–10 cm soil layer was ≥5.5; it was only profitable to apply G to the MT site where the soil compaction constraint had been removed by deep ripping. The use of L increases soil pHCaCl2, resulting in the improved availability of anions, phosphorus (P) in the LT and molybdenum (Mo) at all sampling times, but reduced availability of cations zinc (Zn) in the LT and manganese (Mn) at all sampling. The application of G reduced Mo concentrations, due to the high SO4–S content of the soil.


2018 ◽  
Vol 64 (No. 10) ◽  
pp. 491-497 ◽  
Author(s):  
Holík Ladislav ◽  
Hlisnikovský Lukáš ◽  
Kunzová Eva

This study evaluated how organic manures and mineral fertilizers affect winter wheat grain and straw yields and grain quality properties. The analysed period of the long-term fertilizer experiment was established in Čáslav, Czech Republic, in 1955 and covers the seasons 2011–2014. The fertilizer treatments were: control; farmyard manure (FYM); FYM + P; FYM + K; FYM + PK; FYM + N<sub>1</sub>; FYM + N<sub>2</sub>; FYM + N<sub>1</sub>PK; FYM + N<sub>2</sub>PK and FYM + N<sub>3</sub>PK. The highest grain yields were recorded in the FYM + P and FYM + N<sub>3</sub>PK treatments (8.9 t/ha). The highest straw yields were recorded in the FYM + N<sub>3</sub>PK treatment (6.52 t/ha). The lowest yields were provided in the unfertilized control and FYM treatments. Qualitative parameters were evaluated in the control, FYM and FYM + N<sub>3</sub>PK treatments between the years 2011 and 2013. The best quality of wheat grain was provided by the FYM + N<sub>3</sub>PK treatment. Combination of the farmyard manure with NPK is the best way to achieve high grain yields with good quality and leads to sustainable food production.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20&ndash;60 cm, increased water recharge by 16&ndash;21 mm, and decreased ASWS by 89&ndash;133 mm in 0&ndash;300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246&ndash;1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was &lt; 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


1997 ◽  
Vol 37 (5) ◽  
pp. 577 ◽  
Author(s):  
W. J. Slattery ◽  
G. W. Ganning ◽  
V. F. Burnett ◽  
D. R. Coventry

Summary. In a long-term liming experiment in north-eastern Victoria, we have re-applied lime and applied gypsum (1992 season) to assess wheat grain yield responses with on-going changes in soil pH and extractable aluminium. An acid-sensitive wheat (cv. Oxley) was grown in 2 seasons (1992–93), 12 years after initial applications of lime. Where lime (2.5 t/ha) was applied in 1992 to a previously unlimed soil, grain yield was increased by 19 and 46% respectively in the 2 seasons. However, the yield from these newly limed plots was well below the yields obtained from plots limed in 1980. Re-liming plots limed in 1980 resulted in further yield increases, with lime re-applied at 2.5 t/ha increasing yields by 12% in both seasons. Gypsum decreased grain yields on unlimed soil in the year of application but in the second year gave increases in yield. Whilst pH had changed little in the unlimed soil over the 12 years, the concentrations of extractable aluminium in the root zone increased substantially such that these concentrations far exceed levels which may affect acid-sensitive wheats. Liming at 2.5 t/ha did reduce the aluminium at 0–10 cm depth, but the concentrations at 10–20 cm depth (11.7 mg/kg) are likely to restrict grain yield. The data illustrate the progressive nature of soil acidification and the risk to wheat productivity through delaying treating this soil degradation problem.


2009 ◽  
Vol 101 (4) ◽  
pp. 940-946 ◽  
Author(s):  
K. K. Grover ◽  
H. D. Karsten ◽  
G. W. Roth

Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 293 ◽  
Author(s):  
Jie Liu ◽  
Jumei Li ◽  
Yibing Ma ◽  
Yuehui Jia ◽  
Qiong Liang

Recovery efficiency of nitrogen fertilizers has always been an important issue, especially for N fertilizer recommendation rate in cropping systems. Based on the equilibrium of N in the soil–plant system, apparent accumulated N fertilizer recovery (NREac) was determined for long-term (15-years) experiments in wheat (Triticum aestivum L.) and maize (Zea mays L.) rotations at five field sites with various soils and climate characteristics in China. The result showed that the frequency of cropping and the content of soil clay affected NREac positively and negatively, respectively. In the absence of nutrient deficiencies and other soil constraints (from NPK (nitrogen, phosphorus and potassium) in S2-CP (site2-Changping) in Beijing, S3-ZZ (site3-Zhengzhou) in Henan province and S4-YL (site4-Yangling) in Shaanxi province), NREac had a narrow range from 70% to 78% with the highest average of 75% in wheat and maize cropping system. Meanwhile, the value 75% of NERac is a rational value proved by 3414 experiments. Additionally, the nitrate-N approach suggested that nitrate-N could be utilized by subsequent crops, the amount of which is calculated by the equation −1.23 × [(NO3−-N) − 87]. Furthermore, another simpler and feasible method was proposed to maintain basic soil fertility while achieving a rational grain yield and maintaining a safe environmental upper threshold of nitrate. The present study provided a suit of methods for N fertilizer recommendations for the optimization of N applications in wheat and maize cropping system in China.


1999 ◽  
Vol 35 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. P. Sherchan ◽  
C. J. Pilbeam ◽  
P. J. Gregory

Farmers in the mid-hills of Nepal have a mix of rainfed land on which millet is grown in relay after maize (maize/millet), and irrigated land on which wheat is grown sequentially after rice (wheat–rice). Double cropping is the norm but the diminishing quantities of organic materials, coupled with the trend towards increased use of inorganic fertilizers, have raised questions about the long-term productivity and sustainability of the cropping systems. The aim of this work was to examine the long-term effects (eight years) on grain yield of additions of manure and fertilizer either singly or in combination. Maize/millet and wheat–rice rotations were established on a Dystochrept at Pakhribas Agricultural Centre at about 1450 m altitude. Manure and fertilizer applications were applied to the maize (eight combinations in May) and the wheat (different rates in seven combinations in November) every year with the succeeding crops (millet and rice) utilizing residual nutrients. Yields of maize, millet and rice were greater when manure rather than fertilizer was applied but yields of wheat were less. The combined application of manure and fertilizer significantly increased yields of maize and wheat compared with applications of either manure or fertilizer alone. However, for the subsequent crops (millet and rice) there was either a small residual benefit of the combined application when compared with fertilizer alone, or no benefit when compared with manure alone. Overall, the combined application increased total grain yields by about 35% in the maize/millet rotation and by 16% in the wheat–rice rotation. There was no trend in yields in response to treatment with time.


1996 ◽  
Vol 76 (3) ◽  
pp. 417-422 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
F. Selles

Frequent use of summerfallow (F) to reduce the water deficit associated with cereal cropping in the Canadian prairies has resulted in severe erosion and a reduction in N-supplying power of the soils. It has been suggested that it may be feasible to use annual legumes as green manure (GM) to supply the N requirements and snow trapping to enhance soil water recharge for a subsequent cereal crop. Our objective was to test the feasibility of employing this management strategy for the Brown soil zone of southwestern Saskatchewan, by comparing yields and N uptake of hard red spring wheat (W) (Triticum aestivum L.) grown in a 3-yr rotation with Indianhead black lentil (Lens culinaris Medikus) (i.e., GM-W-W) with that obtained in a monoculture wheat system (i.e., F-W-W). Both cropping systems were operated for 6 yr, from 1988 to 1993, with all phases of the rotations present each year. The results showed that grain yields of wheat after GM were generally significantly (P < 0.05) lower than those after F, primarily because the GM reduced the reserves of available spring soil water. These results occurred despite the fact that five of the six growing seasons had above average precipitation. Yields of wheat grown on stubble were unaffected by rotation. Grain N concentration was greater for wheat grown on GM partial-fallow than for wheat grown on conventional-F in the final 3 yr of the study which was due mainly to the lower wheat yields in the GM system (i.e., yield dilution). Our results suggest that, for annual legume GM to be used successfully in the Brown soil zone, producers should seed it as early as possible (late April to early May) and terminate the growth of the legume by the first week of July, even if this means foregoing some N2 fixation. Key words: Summerfallow, soil water, grain protein, N content, soil nitrogen


1993 ◽  
Vol 73 (3) ◽  
pp. 713-719 ◽  
Author(s):  
A. P. Moulin ◽  
H. J. Beckie

The EPIC and CERES simulation models were used to predict spring wheat (Triticum aestivum L.) grain yield from long-term (1960–1989) crop rotations at Melfort, Saskatchewan. Although both models simulated annual yields poorly, they predicted long-term mean yields with reasonable accuracy. Key words: Spring wheat, Triticum aestivum L., yield, models, CERES, EPIC


2017 ◽  
Vol 40 (9) ◽  
pp. 1243-1249 ◽  
Author(s):  
W. Raun ◽  
M. Golden ◽  
J. Dhillon ◽  
D. Aliddeki ◽  
E. Driver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document