Low-cost automated biochemical phenotyping for optimised nutrient quality components in ryegrass breeding

2016 ◽  
Vol 67 (8) ◽  
pp. 888 ◽  
Author(s):  
L. W. Pembleton ◽  
J. Wang ◽  
G. C. Spangenberg ◽  
J. W. Forster ◽  
N. O. I. Cogan

Quantification of forage quality is essential for the identification of elite genotypes in forage grass breeding. Perennial ryegrass is the most important temperate species for global pastoral agriculture. However, the protein content of ryegrass generally exceeds the requirements of a grazing animal, and the ratio of water soluble carbohydrate (WSC) to protein is too low for efficient protein utilisation. This results in poor nitrogen use efficiency (NUE) in the farming system by livestock, and hence limits optimal animal production. New ryegrass cultivars with optimised WSC and protein content are desirable for farming efficiencies. Several methods are available for quantification of WSC and plant protein (such as near-infrared spectroscopy [NIRS] and high performance liquid chromatography [HPLC]). However, such methods are labour-intensive, low-throughput and cost-prohibitive for commercial breeding programs, which typically need to assess thousands of samples annually. An accurate high-throughput micro-plate-based protocol has been developed and validated, with the ability to simultaneously process and quantify WSC and plant protein with a high level of automation, and an increase in sample processing of ~10-fold compared with commonly-used methods, along with a 3-fold cost reduction. As WSC and protein are extracted simultaneously and quantified within micro-plates, consumable costs are minimised with optimal reagent use efficiency, resulting in a low per sample cost that is suitable for commercial pasture breeding companies. This is the first demonstration of a forage quality phenotyping protocol suitable for broad-scale application, and will allow breeders to select elite genotypes based not only on visual assessment but also on WSC : protein ratios for improved ruminant nutrition.

2000 ◽  
Vol 51 (4) ◽  
pp. 481 ◽  
Author(s):  
K. F. Smith ◽  
G. A. Kearney

Significant deviations associated with site or cultivars within sites were detected in 4 of 6 independent near infrared reflectance spectroscopy (NIRS) calibrations developed to predict water-soluble carbohydrate (WSC) concentrations in perennial ryegrass herbage harvested from 2 sites. These effects were observed both when calibration subsets were selected on the basis of spectral characteristics, and when calibration sets were balanced with respect to a priori knowledge of the structure of the data set. However, there were also instances when non-random deviations were not significant, demonstrating that it was possible to develop broadly based NIRS calibrations to predict WSC in perennial ryegrass. Deviations between NIRS predictions and reference values should be monitored, with reference to the structure of the experiment from which the samples were derived, before NIRS estimates of WSC concentration are used in agronomy or plant breeding.


Weed Science ◽  
1973 ◽  
Vol 21 (3) ◽  
pp. 233-237 ◽  
Author(s):  
E. L. Pulver ◽  
S. K. Ries

Application of 10-8M 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine) to the roots of 10-day old barley (Hordeum vulgareL. ‘Coho’) seedlings grown in nutrient cultures increased the water-soluble protein content when grown at 20 C day, 15 C night with 3 mM nitrate nitrogen. The water-soluble carbohydrate content decreased with increases in water-soluble protein. In a time-course study simazine increased14C-leucine incorporation into protein prior to increasing nitrate uptake, indicating that simazine may have a direct influence on protein synthesis. The nonherbicidal metabolite of simazine, 2-hydroxy-4,6-bis(ethylamino)-s-triazine (hydroxysimazine), did not affect14C-leucine incorporation into protein.


Detritus ◽  
2020 ◽  
pp. 122-130
Author(s):  
Giuseppe Bonifazi ◽  
Riccardo Gasbarrone ◽  
Roberta Palmieri ◽  
Silvia Serranti

The number of flat monitors from televisions, notebooks and tablets has increased dramatically in recent years, thus resulting in a corresponding rise in Waste from Electrical and Electronic Equipment (WEEE). This fact is linked to the production of new high-performance electronic devices. Taking into account a future volume growth trend of WEEE, the implementation of adequate recycling architectures embedding recognition/classification logics to handle the collected WEEE physical-chemical attributes, is thus necessary. These integrated hardware and software architectures should be efficient, reliable, low cost, and capable of performing detection/control actions to assess: i) WEEE composition and ii) physical-chemical attributes of the resulting recovered flow streams. This information is fundamental in setting up and implementing appropriate recycling actions. In this study, a hierarchical classification modelling approach, based on Near InfraRed (NIR) - Hyperspectral Imaging (HSI), was carried out. More in detail, a 3-step hierarchical modelling procedure was designed, implemented and set up in order to recognize different materials present in a specific WEEE stream: End-of-Life (EoL) shredded monitors and flat screens. By adopting the proposed approach, different categories are correctly recognized. The results obtained showed how the proposed approach not only allows the set up of a “one shot” quality control system, but also contributes towards improving the sorting process.


HortScience ◽  
1991 ◽  
Vol 26 (10) ◽  
pp. 1305-1308 ◽  
Author(s):  
Ki-Cheol Son ◽  
Ray F. Severson ◽  
Maurice E. Snook ◽  
Stanley J. Kays

Methanol extracts of external (outer 3 mm) and interior root tissue of four sweetpotato [Ipomoea batatas (L.) Lam.] cultivars (`Centennial', `Jewel', `Regal', and `Resisto') having different levels of susceptibility to the sweetpotato weevil [Cylas formicarius elegantulus Summer] were analyzed for simple carbohydrates (fructose, glucose, sucrose, inositol) and organic acids (malic, citric, quinic) by gas chromatography and for phenolics (caffeic acid, caffeoylquinic acids, rutin) by high-performance liquid chromatography. There were significant differences among cultivars in the concentrations of total sugars and phenolics in the external tissue (P < 0.05). In addition, the distribution of carbohydrates, organic acids, and chlorogenic acid [3-O-caffeoylquinic acid] differed between external and interior tissues. Sucrose was the major water-soluble carbohydrate in all cultivars. With the exception of malic acid, the concentration of carbohydrates, organic acids, and phenolics did not correlate with cultivar susceptibility to the sweetpotato weevil.


Holzforschung ◽  
2015 ◽  
Vol 69 (5) ◽  
pp. 539-545 ◽  
Author(s):  
Yonghong Deng ◽  
Zhuoxi Li ◽  
Xueqing Qiu ◽  
Dacheng Zhao

AbstractLignosulfonic acid (LS) has been applied both as dispersant and dopant for chemical polymerization of 3,4-ethylenedioxythiophene (EDOT). EDOT is successfully polymerized in LS aqueous solutions, resulting in a water-dispersive poly(3,4-ethylenedioxythiophene) (PEDOT) conductive nanoparticle (PEDOT:LS). The structure, intermolecular interaction, and performance of the PEDOT:LS were investigated by ultraviolet-visible-Near-infrared spectrophotometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, transmission electron microscopy, X-ray photoelectron spectroscopy, and surface resistivity tester. Results were interpreted in a way that PEDOT:LS is a polyelectrolyte complex, in which the highly hydrophobic PEDOT is in the inner part of the particle and the LS-rich layer with high hydrophilicity is on its surface. During oxidizing reaction of EDOT to PEDOT in LS, the water-insoluble PEDOT product is adsorbed on the surface of water-soluble LS by electrostatic attraction and forms PEDOT:LS polyelectrolyte complexes. In this process, excess LS is needed to be adsorbed on the surface of PEDOT:LS complexes. The process is driven by π-π interaction to increase the water solubility and contributes to a continuous polymerization. The PEDOT:LS as coating has a good conductivity, transparency, humidity resistance, water resistance, and thermal stability and can be used as high-performance antistatic agents.


2012 ◽  
Vol 151 (3) ◽  
pp. 331-346 ◽  
Author(s):  
G. A. BURNS ◽  
T. J. GILLILAND ◽  
D. GROGAN ◽  
S. WATSON ◽  
P. O'KIELY

SUMMARYPerennial ryegrass evaluation schemes categorize varieties into three maturity (early, intermediate and late) and two ploidy (diploid and tetraploid) groups, and compare the relative yield, persistence and nutritive quality of varieties within these groups. The present study compared these groups for herbage yield, dry matter (DM) concentration and, using near infrared reflectance spectroscopy (NIRS), four quality characteristics (in vitro content of digestible dry matter (CDDM), water-soluble carbohydrate (WSC) and crude protein (CP) concentrations, and buffering capacity). A total of 1208 plots were sown across 5 years in Irish Recommended List trials and then harvested 6–7 times in each of 2 harvest years. This also allowed an assessment of the effect of sward age. Maturity group had no significant effect on annual herbage yield, quality or DM concentration except for in vitro CDDM (P<0·01) but differed significantly for in vitro CDDM (P<0·01), WSC concentration (P<0·01) and buffering capacity (P<0·05) at the first silage harvest. Tetraploid swards had greater annual herbage yields (P<0·001), in vitro CDDM values (P<0·001) and WSC concentrations (P<0·01), but lower CP and DM concentrations (P<0·001) than diploids. Swards in their first full year produced an additional 5·17 t/ha DM (P<0·001) and had a higher (P<0·01) WSC concentration at the second silage harvest than in their second year, but did not differ significantly for in vitro CDDM and WSC, CP or DM concentrations. The present study showed that differences exist in yield, nutritive quality and ensilability indices between maturity and ploidy groups. These observations justify their assessment in variety comparative trials and facilitates particular groups being selected for individual farming systems to increase efficiency.


2009 ◽  
Vol 1 (1) ◽  
pp. 07-13 ◽  
Author(s):  
Hamdollah ESKANDARI ◽  
Ahmad GHANBARI ◽  
Abdollah JAVANMARD

Cereals are high important in feeding ruminant animals for their high dry matter production and low cost. However, cereals forage is poor in protein content which shows their low quality and nutritive value. Regarding to high feed costs of protein supplementations, legumes can be used in livestock nutrition for their high protein content and, thus, providing cost saving. Since legumes have low dry matter yield, acceptable forage yield and quality can obtained from intercropping of cereals and legumes compared with their sole crops. In this paper, forage quality indicators and different factors affecting forage quality are discussed. Forage production and quality of different cereals-legumes intercropping are also reviewed, where; different legumes had different effect on forage quality when intercropped with specific cereal. Regarding to forage quality and quantity, different cereals also led to different production of forage. A number of factors which must be noticified in selecting cereal-legume intercropping compositions, especially for forage production, were considered.


2016 ◽  
Vol 2 (4) ◽  
pp. e1501381 ◽  
Author(s):  
Amol A. Pawar ◽  
Gabriel Saada ◽  
Ido Cooperstein ◽  
Liraz Larush ◽  
Joshua A. Jackman ◽  
...  

In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)–visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode–based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.


Sign in / Sign up

Export Citation Format

Share Document