Modelling the comparative growth, water use and productivity of the perennial legumes, tedera (Bituminaria bituminosa var. albomarginata) and lucerne (Medicago sativa) in dryland mixed farming systems

2017 ◽  
Vol 68 (7) ◽  
pp. 643 ◽  
Author(s):  
Chao Chen ◽  
Andrew Smith ◽  
Phil Ward ◽  
Andrew Fletcher ◽  
Roger Lawes ◽  
...  

Tedera (Bituminaria bituminosa var. albomarginata) has been proposed as an alternative perennial forage legume to lucerne in the mixed farming zone of Australia. Simulation of growth and production of tedera would be a useful tool for assessing its integration into Australian farming systems and agronomic and management options. This paper describes the development and testing of a model of the growth and development of tedera in Agricultural Production Systems Simulator (APSIM). The existing APSIM-Lucerne was modified to develop APSIM-Tedera. The key physiological parameters for tedera were obtained from the literature or by measuring and comparing the phenology and growth characteristics of tedera and lucerne in glasshouse experiments and partially from field experiments. The model was tested using data from a diverse range of soil and climatic conditions. Using the modelling approach, the production of tedera and lucerne was also assessed with long-term (1951–2015) weather data at Arthur River, Western Australia. Biomass simulations of tedera (n = 26, observed mean = 510 kg dry mass ha–1) explained 66% of the observed variation in field experiments (root mean square deviation = 212 kg dry mass ha–1). Long-term simulations of a 4-year pasture phase showed that more total annual biomass (5600 kg ha–1) would be obtained from lucerne than tedera if the pasture forage was harvested four times a year. Less biomass (400 kg ha–1) was also simulated for tedera in summer under this management. When the pasture forage was harvested when biomass was more than 2000 kg ha–1, tedera and lucerne produced similar accumulated biomass in the second (8000 kg ha–1), third (12 000 kg ha–1) and fourth (15 000 kg ha–1) years, but much less in the first 2 years for tedera. The model can be used for assessing tedera production, agronomic and management options in the Mediterranean climate of Australia. The present preliminary study indicates that tedera is not as effective as lucerne for total biomass production, but it may provide useful feed in situations where the summer-autumn feed gap is a major constraint to production. Further research is also necessary to determine the potential role of tedera in areas where lucerne is not well adapted.


2020 ◽  
Author(s):  
Jan H. Schmidt ◽  
Johannes Hallmann ◽  
Maria R. Finckh

AbstractOrganic farming systems are generally based on intensive soil tillage for seed bed preparation and weed control, which in the long-term often leads to reduced soil fertility. To avoid this, organic farming systems need to adopt conservation agriculture practices, such as minimum tillage and diligent crop rotations. However, minimum tillage generally delays soil warming in spring causing reduced nitrogen mineralization and thus poor plant growth. This negative effect needs to be compensated. We hypothesize that, in a diverse crop rotation, organic minimum tillage based on frequent cover cropping and application of dead mulch will improve soil fertility and thus crop production as confirmed by a number of chemical and biological soil indicators.We made use of two long-term field experiments that compare typical organic plough-based systems (25 cm) with minimum tillage systems (<15 cm) including application of transfer mulch to potatoes. Both tillage systems were either fertilized with compost or equivalent amounts of mineral potassium and phosphate. In 2019, soil samples from both fields were collected and analyzed for soil pH, organic carbon, macro-, micronutrients, microbial biomass, microbial activity and total nematode abundance. In addition, performance of pea in the same soils was determined under greenhouse conditions.Results from the field experiments showed an increase of macronutrients (+52%), micronutrients (+11%), microbial biomass (+51%), microbial activity (+86%), and bacterivorous nematodes (+112%) in minimum tillage compared with the plough-based system. In the accompanying greenhouse bioassay, pea biomass was 45% higher under minimum than under plough tillage. In conclusion, the study showed that under organic conditions, soil fertility can be improved in minimum tillage systems by intensive cover cropping and application of dead mulch to levels higher than in a plough-based system. Furthermore, the abundance of bacterivorous nematodes can be used as a reliable indicator for the soil fertility status.



2021 ◽  
Vol 21 (3) ◽  
pp. 262-269
Author(s):  
F. M. AKINSEYE ◽  
A. H. FOLORUNSHO ◽  
AJEIGBE ◽  
A. HAKEEM ◽  
S. O. AGELE

A combination of local-scale climate and crop simulation model were used to investigate the impacts of change in temperature and rainfall on photoperiod insensitive sorghum in the Sudanian zone of Mali. In this study, the response of temperature and rainfall to yield patterns of photoperiod insensitive sorghum (Sorghum bicolor L. Moench) using the Agricultural Production Systems Simulator (APSIM) model was evaluated. Following model calibration of the cultivar at varying sowing dates over two growing seasons (2013 and 2014), a long-term simulation was run using historical weather data (1981-2010) to determine the impacts of temperature and rainfall on grain yield, total biomass and water use efficiency at varying nitrogen fertilizer applications. The results showed that model performance was excellent with the lowest mean bias error (MBE) of -2.2 days for flowering and 1.4 days for physiological maturity. Total biomass and grain yield were satisfactorily reproduced, indicating fairly low RMSE values of 21.3% for total biomass and very low RMSE of 11.2 % for grain yield of the observed mean. Simulations at varying Nfertilizer application rate with increased temperature of 2 °C, 4 °C and 6 °C and decreased rainfall by 25 and 50 % (W-25% and W-50%) posed a highly significant risk to low yield compared to increase in rainfall. However, the magnitude of temperature changes showed a decline in grain yield by 10%, while a decrease in rainfall by W-25% and W-50% resulted in yield decline between 5% and 37%, respectively. Thus, climate-smart site-specific utilization of the photoperiod insensitive sorghum cultivar suggests more resilient and productive farming systems for sorghum in semi-arid regions of Mali. 



2004 ◽  
Vol 55 (8) ◽  
pp. 863 ◽  
Author(s):  
Imma Farré ◽  
Michael J. Robertson ◽  
Senthold Asseng ◽  
Robert J. French ◽  
Miles Dracup

Simulation of narrow-leafed lupin (Lupinus angustifolius L.) production would be a useful tool for assessing agronomic and management options for the crop. This paper reports on the development and testing of a model of lupin development and growth, designed for use in the cropping systems simulator, APSIM (Agricultural Production Systems Simulator). Parameters describing leaf area expansion, phenology, radiation interception, biomass accumulation and partitioning, water use, and nitrogen accumulation were obtained from the literature or derived from field experiments. The model was developed and tested using data from experiments including different locations, cultivars, sowing dates, soil types, and water supplies. Flowering dates ranged from 71 to 109 days after sowing and were predicted by the model with a root mean square deviation (RMSD) of 4–5 days. Observed grain yields ranged from 0.5 to 2.7 t/ha and were simulated by the model with a RMSD of 0.5 t/ha. Simulation of a waterlogging effect on photosynthesis improved the model performance for leaf area index (LAI), biomass, and yield. The effect of variable rainfall in Western Australia and sowing date on yield was analysed using the model and historical weather data. Yield reductions were found with delay in sowing, particularly in water-limited environments. The model can be used for assessing some agronomic and management options and quantifying potential yields for specific locations, soil types, and sowing dates in Western Australia.



2014 ◽  
Vol 65 (10) ◽  
pp. 988 ◽  
Author(s):  
Guangdi D. Li ◽  
Richard C. Hayes ◽  
Jeff I. McCormick ◽  
Matthew J. Gardner ◽  
Graeme A. Sandral ◽  
...  

Incorporation of perennial pastures into cropping rotations can improve whole-farm productivity, profitability and sustainability of mixed farming systems in southern Australia. However, success in establishing perennial pastures depends on choice of species, time of sowing, method of establishment, seasonal conditions, and whether sowing is under a cover-crop. Field experiments were sown from 2008 to 2010 to determine effects of sowing time and the presence of a cover-crop on the performance of four perennial pasture species, lucerne (Medicago sativa L.), chicory (Cichorium intybus L.), phalaris (Phalaris aquatica L.) and cocksfoot (Dactylis glomerata L.), at Yerong Creek, New South Wales (NSW). Results showed that lucerne was the most productive pasture, followed by chicory and phalaris, with cocksfoot being the poorest performer. Under favourable seasonal conditions, lucerne and chicory pastures produced 29.3 and 25.0 t ha–1 of total dry matter (DM), comprising 71% and 52%, respectively, of sown perennial species in the sward in their second growing season, when sown in autumn. Spring-sown pastures produced 24.6 and 18.3 t ha–1 of total DM in the second season, with 55% and 47% of sown species in the sward being lucerne and chicory, respectively. However, spring-sown pastures contained a very low proportion of subterranean clover (Trifolium subterraneum L.) in the sward in the first 2 years, despite efforts to broadcast seeds at the break of season in the following year. It is recommended that non-legume perennial species, such as chicory and phalaris, be sown in autumn with companion annual legumes until methods are developed and tested to establish annual legumes reliably in spring. However, lucerne can be established in autumn or spring because it can fix its own nitrogen and is not reliant on a companion legume. Cocksfoot cv. Kasbah, in general, appears less suitable than the other perennial species for this medium-rainfall environment in southern NSW. Our study showed that pastures sown without a cover-crop had the most reliable establishment, whereas pastures sown with a cover-crop in a dry year had poor establishment or total failure, as well as a significant reduction of grain yield from the cover-crop. In a wet year, pastures established satisfactorily under a cover-crop; however, growth of the cover-crop still suppressed pasture DM production in subsequent years. Research is under way to model our data to determine the likely financial implications of establishing perennial pastures under cover-crops.



2022 ◽  
pp. 206-214
Author(s):  
Johann A. Strauss

Abstract Over the past 15 years the adoption rate of Conservation Agriculture (CA) in southern South Africa has increased at a fast rate, although the adoption of the three pillars of CA was to varying degrees. The adoption of CA happened in the absence of any policy support framework directed to CA. The market drove the adaptation rate with a handful of local producers being the first to adopt no-till (NT) strategies. Long-term field experiments demonstrate that the effects of crop rotation include increased yields from the main wheat crop so that two-thirds of the present total wheat production may be achieved with only half the cropped area under the main crop, and gross margins are better - and dramatically better - with integration of cropping and livestock. This chapter presents an overview of the benefits to yield and economic sustainability of including alternative cash and pasture crops into CA farming systems in the winter rainfall region of southern South Africa.





2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at G&ouml;d&ouml;ll&ouml;. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.



2021 ◽  
pp. 1-10
Author(s):  
Min Huang ◽  
Zui Tao ◽  
Tao Lei ◽  
Fangbo Cao ◽  
Jiana Chen ◽  
...  

Summary The development of high-yielding, short-duration super-rice hybrids is important for ensuring food security in China where multiple cropping is widely practiced and large-scale farming has gradually emerged. In this study, field experiments were conducted over 3 years to identify the yield formation characteristics in the shorter-duration (∼120 days) super-rice hybrid ‘Guiliangyou 2’ (G2) by comparing it with the longer-duration (∼130 days) super-rice hybrid ‘Y-liangyou 1’ (Y1). The results showed that G2 had a shorter pre-heading growth duration and consequently a shorter total growth duration compared to Y1. Compared to Y1, G2 had lower total biomass production that resulted from lower daily solar radiation, apparent radiation use efficiency (RUE), crop growth rate (CGR), and biomass production during the pre-heading period, but the grain yield was not significantly lower than that of Y1 because it was compensated for by the higher harvest index that resulted from slower leaf senescence (i.e., slower decline in leaf area index during the post-heading period) and higher RUE, CGR, and biomass production during the post-heading period. Our findings suggest that it is feasible to reduce the dependence of yield formation on growth duration to a certain extent in rice by increasing the use efficiency of solar radiation through crop improvement and also highlight the need for a greater fundamental understanding of the physiological processes involved in the higher use efficiency of solar radiation in super-rice hybrids.



Sign in / Sign up

Export Citation Format

Share Document