scholarly journals Simulating lupin development, growth, and yield in a Mediterranean environment

2004 ◽  
Vol 55 (8) ◽  
pp. 863 ◽  
Author(s):  
Imma Farré ◽  
Michael J. Robertson ◽  
Senthold Asseng ◽  
Robert J. French ◽  
Miles Dracup

Simulation of narrow-leafed lupin (Lupinus angustifolius L.) production would be a useful tool for assessing agronomic and management options for the crop. This paper reports on the development and testing of a model of lupin development and growth, designed for use in the cropping systems simulator, APSIM (Agricultural Production Systems Simulator). Parameters describing leaf area expansion, phenology, radiation interception, biomass accumulation and partitioning, water use, and nitrogen accumulation were obtained from the literature or derived from field experiments. The model was developed and tested using data from experiments including different locations, cultivars, sowing dates, soil types, and water supplies. Flowering dates ranged from 71 to 109 days after sowing and were predicted by the model with a root mean square deviation (RMSD) of 4–5 days. Observed grain yields ranged from 0.5 to 2.7 t/ha and were simulated by the model with a RMSD of 0.5 t/ha. Simulation of a waterlogging effect on photosynthesis improved the model performance for leaf area index (LAI), biomass, and yield. The effect of variable rainfall in Western Australia and sowing date on yield was analysed using the model and historical weather data. Yield reductions were found with delay in sowing, particularly in water-limited environments. The model can be used for assessing some agronomic and management options and quantifying potential yields for specific locations, soil types, and sowing dates in Western Australia.

2002 ◽  
Vol 53 (10) ◽  
pp. 1155 ◽  
Author(s):  
I. Farré ◽  
M. J. Robertson ◽  
G. H. Walton ◽  
S. Asseng

Canola is a relatively new crop in the Mediterranean environment of Western Australia and growers need information on crop management to maximise profitability. However, local information from field experiments is limited to a few seasons and its interpretation is hampered by seasonal rainfall variability. Under these circumstances, a simulation model can be a useful tool. The APSIM-Canola model was tested using data from Western Australian field experiments. These experiments included different locations, cultivars, and sowing dates. Flowering date was predicted by the model with a root mean squared deviation (RMSD) of 4.7 days. The reduction in the period from sowing to flowering with delay in sowing date was accurately reproduced by the model. Observed yields ranged from 0.1 to 3.2 t/ha and simulated yields from 0.4 to 3.0 t/ha. Yields were predicted with a RMSD of 0.3–0.4 t/ha. The yield reduction with delayed sowing date in the high, medium, and low rainfall region (3.2, 6.1, and 8.6% per week, respectively) was accurately simulated by the model (1.1, 6.7, and 10.3% per week, respectively). It is concluded that the APSIM-Canola model, together with long-term weather data, can be reliably used to quantify yield expectation for different cultivars, sowing dates, and locations in the grainbelt of Western Australia.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 515-520 ◽  
Author(s):  
H. M. Booker ◽  
P. Umaharan ◽  
C. R. McDavid

Field experiments were carried out in St. Augustine, Trinidad & Tobago, West Indies to determine the effects of time of inoculation of Cowpea severe mosaic virus (CPSMV) and cultivar on crop growth and yield in cowpea (Vigna unguiculata). Crop growth and yield loss were investigated through growth analysis and yield component analysis on three cultivars in two seasons (wet and dry). Time of inoculation had the most profound impact on yield. Inoculations during the early log phase (seedling stage), 12 days after seeding (DAS), consistently had the greatest impact (50 to 85% yield loss) compared with those inoculated during the exponential growth phase (24 DAS; 22 to 66% yield loss) or linear growth phase (35 DAS; 2 to 36% yield loss). The effects were particularly pronounced in the dry season and in the more determinate cultivar, H8-8-27. Reduction in maximum leaf area index, leaf area duration, or maximum vegetative dry matter explained reductions in yield. Yield reductions resulted primarily from reduced pod number per plant and, to a lesser extent, from reduced average pod dry weight. The results show that CPSMV control measures should be aimed at delaying infection by CPSMV to minimize the impact on cowpea yield.


2000 ◽  
Vol 36 (3) ◽  
pp. 291-301 ◽  
Author(s):  
N. R. PATEL ◽  
A. N. MEHTA ◽  
A. M. SHEKH

Two pigeonpea (Cajanus cajan) cultivars GT-100 (determinate type) and BDN-2 (indeterminate type) were planted on three sowing dates (30 June, 20 July and 9 August) in 1993 and 1994. Pigeonpea sown on the earliest date attained the highest leaf area index (LAI), absorbed the largest amount of photosynthetically active radiation (PAR) and produced the highest total dry matter (DM). The differences in biomass and seed yield among sowing dates were largely ascribed to totals of PAR absorbed and dry matter produced, especially in the reproductive phase. The high LAI persistence and PAR interception, coinciding with the podding phase, appeared to be mainly responsible for the increased yield in early sowings. Radiation use efficiency decreased as sowing was delayed, but did not have much effect on DM accumulation in various phases nor on final yields. Although the extinction coefficient was not influenced by sowing dates, it was inversely related to leaf area index in both cultivars. Between the cultivars, the differences in biomass reflected the differences in PAR absorbed and DM accumulation, depending upon leaf area development and growth duration. The cultivar GT-100 had a higher seed yield and harvest index than BDN-2 due to more of the DM produced being partitioned into pods during the reproductive phase on account of its determinate growth habit. Early sowings of determinate cultivars could maximize both vegetative and reproductive growth, capture more light and produce more seed yields under rainfed conditions.


2021 ◽  
Vol 12 (5) ◽  
pp. 594-602
Author(s):  
L. Rana ◽  
◽  
H. Banerjee ◽  
D. Mazumdar ◽  
S. Sarkar ◽  
...  

The field experiments were conducted at farmer’s field, Madandanga village under Chakdaha Block of Nadia district in West Bengal during rabi season 2014-15 and 2015-16. Treatments were distributed in split-factorial design, with three varieties (P ‘3533’, P ‘3396’, P ‘30V92’) in the main plot and three planting density (55,555, 66,666, 83,333 plants ha-1) × three sowing dates (November 20, November 30, December 10) combinations in the sub-plots, replicated thrice. Irrespective of planting density and sowing date, the variety ‘P30V92’ produced the highest yield, followed by ‘P3396’ and ‘P3533’. The significantly highest grain and stover yield was obtained in high density planting (83,333 plants ha-1), accounting 44.2 and 39.6% more than low planting density (55,555 plants ha-1), respectively. The maximum grain and stover yields were obtained from Nov. 20 sown plants; being 7.71 and 11.95% more than the grain yield derived from late sown (Dec. 10) plants. A correlation study showed that among the growth and yield components, leaf area index (0.96) and shelling percentage (0.91) exhibited highly positive direct effects on the grain yield of hybrid maize. However, other growth attributes, namely P uptake (0.88), K uptake (0.86) and plant height (0.81) exerted comparatively low positive direct effects on the grain yield of hybrid maize. Further, the standard regression equation revealed a significant relationship of shelling percentage (p≤0.01), leaf area index (p≤0.01) and uptake of P (p≤0.05) with grain yield.


Author(s):  
S. Nanthakumar ◽  
C. Pravin Kumar ◽  
P. Thilagam

Two field experiments were carried out at Horticultural College, Kalavai to study the effect of growth regulators and organics on growth and yield of spiny brinjal (Solanum melongena) var.VRM-1. Growth regulators viz., Salicylic acid @ 200 ppm, Brassinosteriods  @ 0.1 ppm, Triacontanol @ 5 ppm and NAA @ 40 ppm and organics viz., Seaweed extract @ 1.0%, Humic acid @ 1.0%, Panchagavya @ 5.0% and Vermiwash @ 5.0% were tested and applied as foliar spray in spiny brinjal var VRM-1. Among the treatments tested, Panchagavya treatment recorded maximum value with regard to plant height (85.45 cm), leaf area (131.59 cm),  leaf area index (3.66), branches per plant (21.3 Nos) , flowers per plant (55.5 Nos), fruits per plant (20.9 Nos), fruit length (5.8 cm), fruit circumference (14.7 cm)  and individual fruit weight (82.1 g). Brassinosteroids treatment found to be effective in increasing root length (22.75 cm).


2018 ◽  
Vol 5 (2) ◽  
pp. 117-122
Author(s):  
Mebrate Tamrat Woldeselassie ◽  
Daniel Admasu

Field experiments were carried out to study the response of two lentil varieties to varying sowing dates in a split plot design with three replications, in which varieties were assigned to main plots and sowing dates to sub plots. The study was conducted at Enewari research site of Debre Birhan agricultural research center for three consecutive years (2007 - 2009) on two soil types. The results showed that no significant difference between varieties for grain yield. However, variety Alemaya produced highest grain yields of 1.3 t/ha and 1.22 t/ha from fifth (30-July) sowing date on heavy and relatively light Vertisols respectively. On the other hand, the local variety produced highest grain yields of 1.4 t/ha and 1.06 t/ha on the fifth and six sowing dates on heavy and relatively light Vertisols respectively. Grain yield proportionally increased with increasing biological yield in different sowing dates on both soil types. On heavy Vertisol varieties responded differently to the changes of sowing dates. Variety Alemaya had responded to a wider sowing dates. Early August to mid-August sowing found to be optimum for local variety. On light Vertisol, the functional relationship was unexplained for both varieties. In general, heavy Vertisol gave higher responses than relatively light vertisol throughout most parameters and levels tested.  


1994 ◽  
Vol 45 (3) ◽  
pp. 613 ◽  
Author(s):  
JM Carter ◽  
WK Gardner ◽  
AH Gibson

The response of faba beans (Vicia faba L. cv. Fiord) to seed inoculation with eight strains of Rhizobium leguminosarum biovar. viciae was examined in field experiments at six sites on acid soils in south-west Victoria. At two of the sites, two additional strains were examined, and in 1988, 14 strains were examined at one site. Very low natural populations of R. leguminosarum bv. viciae were found at the experimental sites. Most strains resulted in improved early nodulation and increased grain yield at all sites, when compared to inoculation with the commercial strain of rhizobia (SU391). Plant dry matter production and nitrogen accumulation in the plant shoot tissue was also increased at one site during the flowering period by some strains. Large visual differences between plots inoculated with SU391 and other strains were evident at most sites. Most uninoculated treatments were not nodulated and yielded very poorly. Treatments inoculated with the strain SU391 performed similarly to the uninoculated treatments.


Author(s):  
L. S. Sampaio ◽  
R. Battisti ◽  
M. A. Lana ◽  
K. J. Boote

Abstract Crop models can be used to explain yield variations associated with management practices, environment and genotype. This study aimed to assess the effect of plant densities using CSM-CROPGRO-Soybean for low latitudes. The crop model was calibrated and evaluated using data from field experiments, including plant densities (10, 20, 30 and 40 plants per m2), maturity groups (MG 7.7 and 8.8) and sowing dates (calibration: 06 Jan., 19 Jan., 16 Feb. 2018; and evaluation: 19 Jan. 2019). The model simulated phenology with a bias lower than 2 days for calibration and 7 days for evaluation. Relative root mean square error for the maximum leaf area index varied from 12.2 to 31.3%; while that for grain yield varied between 3 and 32%. The calibrated model was used to simulate different management scenarios across six sites located in the low latitude, considering 33 growing seasons. Simulations showed a higher yield for 40 pl per m2, as expected, but with greater yield gain increments occurring at low plant density going from 10 to 20 pl per m2. In Santarém, Brazil, MG 8.8 sown on 21 Feb. had a median yield of 2658, 3197, 3442 and 3583 kg/ha, respectively, for 10, 20, 30 and 40 pl per m2, resulting in a relative increase of 20, 8 and 4% for each additional 10 pl per m2. Overall, the crop model had adequate performance, indicating a minimum recommended plant density of 20 pl per m2, while sowing dates and maturity groups showed different yield level and pattern across sites in function of the local climate.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


2017 ◽  
Vol 14 (2) ◽  
pp. 147-154 ◽  
Author(s):  
MM Kamrozzaman ◽  
MAH Khan ◽  
S Ahmed ◽  
N Sultana

An experiment was conducted at Sadipur charland under Farming System Research and Development Site, Hatgobindapur, Faridpur, during rabi season of 2012-13 and 2013-14 to study the growth and yield performance of cv. BARI Gom-24 as affected by different dates of sowing under Agro-ecological Zone-12 (AEZ-12) of Bangladesh. The experiment was laid out in randomized complete block design with six replications, comprising five different dates of sowing viz. November 5, November 15, November 25, December 5 and December 15. Results reveal that the tallest plant, leaf area index, total dry matter, and crop growth rate were observed in November 25 sown crop and leaf area index, total dry matter and crop growth rate were higher at booting, grain filling, and tillering stages of the crop. Maximum effective tillers hill-1 (3.49), spikes m-2, (311), number of grains spike-1 (42.20) and 1000-grain weight (52.10 g) were produced by November 25 sown crop exhibited the highest grain (4.30 t ha-1) and straw yield (4.94 t ha-1) as well as harvest index (46.88%) of the crop. Lowest performance was observed both in early (November 5) and late sown crop (December 15). The overall results indicated that November 25 sown crop showed better performance in respect of growth and yield of wheat under charland ecosystem of Bangladesh.J. Bangladesh Agril. Univ. 14(2): 147-154, December 2016


Sign in / Sign up

Export Citation Format

Share Document