Effect of fruit maturity on the response of 'Kensington' mango fruit to heat treatment

2001 ◽  
Vol 41 (6) ◽  
pp. 793 ◽  
Author(s):  
K. K. Jacobi ◽  
E. A. MacRae ◽  
S. E. Hetherington

The effects of conditioning and hot water treatments on immature and mature ‘Kensington’ mangoes were examined. A hot water treatment of 47°C fruit core temperature held for 15 min increased weight loss (50%), fruit softness (15%), disrupted starch hydrolysis and interacted with maturity to reduce the skin yellowness (40–51%) of early harvested fruit. Immature fruit were more susceptible to hot water treatment-induced skin scalding, starch layer and starch spot injuries and disease. Conditioning fruit at 40°C for up to 16 h before hot water treatment accelerated fruit ripening, as reflected in higher total soluble solids and lower titratable acidity levels. As fruit maturity increased, the tolerance to hot water treatment-induced skin scalding and the retention of starch layers and starch spots increased and susceptibility to lenticel spotting decreased. A conditioning treatment of either 22° or 40°C before hot water treatment could prevent the appearance of cavities at all maturity levels. The 40°C conditioning temperature was found to be more effective in increasing fruit heat tolerance than the 22°C treatment; the longer the time of conditioning at 40°C, the more effective the treatment (16 v. 4 h). For maximum fruit quality, particularly for export markets, it is recommended that mature fruit are selected and conditioned before hot water treatment to reduce the risk of heat damage.

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 737-740 ◽  
Author(s):  
Zisheng Luo

Mei (Prunus mume `Daqinghe') fruit were immersed in 20 °C (control), 47 °C (HWT47), 50 °C (HWT50), or 53°C (HWT53) water for 3 min after harvest, then stored at 20 °C. Firmness, peel color, chlorophyll, chlorophyllase activity, soluble solids content (SSC), titratable acidity (TA), respiration, ethylene production, and pectinmethylesterase (PME) and polygalacturonase (PG) activity were monitored to determine the effects of hot water treatment in delaying fruit ripening. Control fruit displayed a typical climacteric pattern of respiration and ethylene production. Peak CO2 production and ethylene production were observed 6 days after harvest. Fruit softening was accompanied by decreases in hue angle, chlorophyll content, SSC, and TA and increases in chlorophyllase and PME and PG activity. Hot water treatment delayed the onset of the climacteric peaks of CO2 and ethylene production. The delays were associated with delays in fruit softening, consistent with lags in the rise of PME and PG activity; delays in yellowing and chlorophyll breakdown, consistent with lags in the rise of chlorophyllase activity; and delays in loss of SSC and TA. The shelf life of fruit increased by 6 days, or 60%, with HWT47, and by 8 days, or 80%, with HWT50 or HWT53.


2006 ◽  
Vol 131 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Pauliina Palonen ◽  
Leena Lindén

`Maurin Makea', `Muskoka', ` Ottawa', and `Preussen' red raspberry (Rubus idaeus L.) canes were collected from the field and subjected to different hot water treatments (20, 35, 40, 45, and 50 °C) to determine if endodormancy could be removed by a near lethal stress. Estimation of days for 50% budbreak (DD50) was found useful for describing the state of bud dormancy in the samples. Bud dormancy was broken in `Ottawa' by immersing the canes in 45 °C water for 2 hours, in `Maurin Makea' by treating the canes in 40 °C water, and in `Preussen' by both 40 and 45 °C treatments. The influence of this treatment on dormancy and cold hardiness at different times of the winter was further examined using `Ottawa' raspberry. The treatment removed bud dormancy most effectively in October, when the samples were in deepest dormancy. A slight effect was observed in November, but no effect in January. During ecodormancy in February the treatment delayed budbreak. Hot water treatment reduced cold hardiness of `Ottawa' canes by 8 to 15 °C, and that of buds by 9 to 13 °C during both endo- and ecodormancy. Based on the capacity of buds and canes to reacclimate, recovery from the stress treatment was possible at temperatures ≥4 °C. Loss of cold hardiness was caused by high treatment temperature itself and was not related to breaking of dormancy in samples. This finding suggests that dormancy and cold hardiness are physiologically unconnected in raspberry.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 503F-504
Author(s):  
Gary J. Wilfret

Intact tubers of Caladium cv. Florida Elise were soaked for 30 min in water at 24 or 50 °C in l998 and manually cut into cubes with 2-cm sides. Propagules were planted on 15-cm centers in raised sand beds covered with white plastic. Tubers were harvested in 6 months, air-dried, cleaned, weighed, and graded. Yield of No. 2 tubers (>1.9 <3.8 cm diam) was increased 31%, total tuber weight was 13% greater, and the production index was 13% larger due to hot-water treatment. No differences were determined for other tuber sizes. Tubers harvested from both treatments were soaked for 30 min in 1999 in water at 24 or 50 °C or in water at 24 or 50 °C that contained the fungicide Systec 85WDG [thiophanate methyl(dimethyl{(1,2-phenylene)-bis(iminocarbonothioyl)}bis{carbamate}] at 33.6 g/20 L. Tubers were cut and planted as in l998 and harvested in 2000. Tuber yields and production indices were greater in all hot-water treatments, but were not increased by fungicides alone. Yields from tubers that were not hot-water treated in l998 but were soaked in hot water in l999 were similar to those tubers that were hot-water-treated in both years. Fungicides did not have an additive effect when hot-water was used.


2013 ◽  
Vol 64 (9) ◽  
pp. 892 ◽  
Author(s):  
Shamsul A. Bhuiyan ◽  
Barry J. Croft ◽  
Emily C. Deomano ◽  
Rebecca S. James ◽  
Joanne K. Stringer

Resistance of sugarcane plants to smut is believed to be manifested by two mechanisms, (i) external resistance, governed by structural barrier of bud scale and/or chemical secretion from the bud, and (ii) internal resistance, regulated by interaction of plants and fungus within the plant tissue. Hot water treatments are routinely used to treat seed cane to eliminate a range of diseases including smut. It is believed that hot water treatment predisposes sugarcane plant to smut. This study was conducted to determine the resistance mechanisms of some important Australian parent clones, and their response to hot water treatment in relation to smut infection. Twenty-one clones, used regularly in the Australian sugarcane breeding program, were evaluated. Results showed that ~47% of clones had external and 33% had internal resistance mechanisms, indicating that parent clones selected for this study possessed diverse mechanism of resistance. There is a possibility some or all clones with internal resistance mechanisms could also possess external resistance mechanism. Except one highly susceptible clone (Q205) in one trial, none of the clones subject to hot water treatment became more susceptible to smut. Although some clones showed increased resistance after hot water treatment. These findings will benefit breeders in selecting parent materials in their crossing programs to develop smut-resistant cultivars.


2009 ◽  
Vol 62 ◽  
pp. 404-404
Author(s):  
L-H. Cheah ◽  
A.T. Marsh ◽  
D.I. Hedderley

The effect of hot water treatment of carrot seeds on seedborne pathogens (Alternaria and Fusarium spp) and seed germination was studied Carrot seeds (no fungicide) were dipped in water at 50C or 52C for 10 20 or 30 min and plated on potato dextrose agar to assess pathogen growth Treated seeds were sown in cell trays to assess germination in a glasshouse The weight of the germinated seedlings was also recorded All hot water treatments significantly (P


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1349-1353 ◽  
Author(s):  
Marisa M. Wall

The fruit quality and ripening response of `Brazilian' bananas (Musa sp., group AAB) were determined following hot water immersion treatments for surface disinfestation. Summer-harvested fruit were exposed to 47, 49, or 51 °C water for 10, 15 and 20 minutes and ripened at 20 °C. The summer experiment established the exposure time and temperature limits for fruit injury. Winter-harvested fruit were immersed in 48, 49, or 50 °C water for 5, 10 and 15 minutes, stored for 12 d at 14 °C, and ripened at 22 °C. The hot water exposure time had a greater effect than the water temperature on banana fruit ripening. Nontreated bananas ripened after 13 to 15 d, and ripening was delayed by 2 to 7 d when fruit were exposed for 15 or 20 minutes to hot water. Hot water treatments did not inhibit pulp softening, but peels tended to be firmer for bananas immersed in 49 to 51 °C water than control fruit. Heat-treated bananas were not different from control fruit in soluble solids content or titratable acidity, however the conversion of starch to sugars was reduced at higher temperatures and exposure times. Bananas exposed for 20 minutes to hot water had delayed respiratory peaks and ethylene production, especially at 51 °C. Mild peel injury was observed on fruit exposed to higher temperatures (49 to 51 °C) for longer durations (15 or 20 minutes).


1969 ◽  
Vol 72 (3) ◽  
pp. 469-474
Author(s):  
Noemí Díaz ◽  
Teresita Rodríguez ◽  
Isabel B. De Caloni

Mangos given hot water treatments for 0 , 90, 120, 150 and 180 minutes, followed by cold storage for seven and 14 days, were sensory-evaluated for overall quality, shelf life, and percentage fruit decay. Hot water treatment did not affect the physical, chemical and organoleptic characteristics studied. The decay observations indicate that fruits held for seven days in cold storage (50-55° F and 85-90% RH) should be of good marketing quality for up to 12 days. If kept for 14 days in cold storage, they should be marketed within four to five days after removal from the cold.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 705-708 ◽  
Author(s):  
Allan B. Woolf ◽  
Michael Lay-Yee

`Hass' avocados [Persea americana Mill.] were pretreated in water (38 °C for up to 120 min) immediately before 50 °C hot water treatments of up to 10 min. Fruit were stored for 1 week at 6 °C and ripened at 20 °C. External browning was evaluated immediately upon removal from cold storage, and fruit quality evaluated when fruit were ripe. Pretreatments at 38 °C tended to reduce the levels of external browning, skin hardening, and internal disorders, such as tissue breakdown and body rots, that were associated, and increased, with longer hot water treatments. A pretreatment of 60 min was the most effective for eliminating external browning, and reducing hardening of the skin when fruit were ripe following hot water treatment. Examination of heat shock protein (hsp) gene expression in avocado skin tissue, showed that levels of hspl7 and hsp70 homologous mRNA increased with increasing pretreatment duration. The results demonstrate that 38 °C pretreatments increase the tolerance of avocado fruit to subsequent hot water treatments.


1996 ◽  
Vol 59 (7) ◽  
pp. 746-750 ◽  
Author(s):  
ANA MARIA RODRIGUEZ DE LEDESMA ◽  
HANS P. RIEMANN ◽  
THOMAS B. FARVER

Dipping in 10% trisodium phosphate (TSP) at 10°C for 15 s and/or hot water (95°C) for 5 s significantly (P &lt; 0,05) reduced the numbers of live Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus inoculated on the surface of chicken wings. Mean reductions after treatment with TSP (after storage at 10°C or 4°C, respectively) were 93.45% and 62.42% for S. typhimurium, 80.33% and 54.45% for S. aureus, and 39.04% and 81.41 % for L. monocytogenes. Similarly treatment with hot water resulted in reductions of 83.5% and 47.44%, 90.19% and 91.49%, and 68.57% and 77.83%, respectively, for the three bacterial species. The combined effects of TSP and hot water were 94.76% and 99.67%, 84.41 % and 96.68%, and 79.49% and 94.88%. After treatment with TSP, there was always a better recovery of L. monocytogenes when the wings were stored at 10°C compared to 4°C. No similar storage temperature effect on recovery of L. monocytogenes was observed in the absence of TSP. Based on the smell and appearance of uninoculated, fresh chicken wings after treatment with 10% solutions of TSP or Na2CO3 (10°C) and hot water, the control group was always preferred after 1 day of storage, but not after 6 days of storage. Combination treatment with TSP and hot water showed that after 7 days of storage the number of spoilage organisms was 3 log units higher on the control samples than on the treated wings. The combined TSP and hot water treatments were more effective in reducing counts of S. typhimurium, S. aureus, and L. monocytogenes than the combined Na2CO3 and hot water treatment (95°C for 5 s). Changes in subcutaneous temperature as a result of treatment with TSP and hot water treatment were minimal.


2009 ◽  
Vol 72 (1) ◽  
pp. 151-156 ◽  
Author(s):  
NORASAK KALCHAYANAND ◽  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
MICHAEL N. GUERINI ◽  
...  

1,3-Dibromo-5,5-dimethylhydantoin (DBDMH; 25°C) and hot water (85°C) spray treatments were evaluated for efficacy in decontamination of pathogenic bacteria attached to beef carcass surfaces represented by cutaneous trunci (CT) muscle sections and beef hearts. Treatments were evaluated using two different systems, a commercial carcass wash cabinet and a model carcass washer. The effects were measured immediately after treatment and again after 48 h of storage at 4°C. Sections of CT and beef hearts were inoculated with bovine fecal solution containing approximately 6 log CFU/cm2 of Escherichia coli O157:H7 and Salmonella. After DBDMH or hot water spray treatments, bacterial populations were enumerated immediately and after storage for 48 h at 4°C. DBDMH treatments reduced aerobic plate counts, Enterobacteriaceae, E. coli O157: H7, and Salmonella by the same or slightly lower amounts relative to hot water treatment. DBDMH reduced aerobic plate counts and Enterobacteriaceae by 2.8 to 3.6 log CFU/cm2, E. coli O157:H7 by 1.6 to 2.1 log CFU/cm2, and Salmonella by 0.7 to 2.3 log CFU/cm2 on CT sections and beef hearts. Hot water treatment reduced aerobic plate counts and Enterobacteriaceae by 3.0 to 4.1 log CFU/cm2, E. coli O157:H7 by 1.8 to 2.3 log CFU/cm2, and Salmonella by 2.5 to 2.8 log CFU/cm2. After 48 h of storage, the reductions of organisms by DBDMH and hot water treatments were not different. This study demonstrated that DBDMH spray washing could be effective as an antimicrobial intervention for beef carcasses and variety meats.


Sign in / Sign up

Export Citation Format

Share Document