scholarly journals Ripening Behavior and Quality of `Brazilian' Bananas following Hot Water Immersion to Disinfest Surface Insects

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1349-1353 ◽  
Author(s):  
Marisa M. Wall

The fruit quality and ripening response of `Brazilian' bananas (Musa sp., group AAB) were determined following hot water immersion treatments for surface disinfestation. Summer-harvested fruit were exposed to 47, 49, or 51 °C water for 10, 15 and 20 minutes and ripened at 20 °C. The summer experiment established the exposure time and temperature limits for fruit injury. Winter-harvested fruit were immersed in 48, 49, or 50 °C water for 5, 10 and 15 minutes, stored for 12 d at 14 °C, and ripened at 22 °C. The hot water exposure time had a greater effect than the water temperature on banana fruit ripening. Nontreated bananas ripened after 13 to 15 d, and ripening was delayed by 2 to 7 d when fruit were exposed for 15 or 20 minutes to hot water. Hot water treatments did not inhibit pulp softening, but peels tended to be firmer for bananas immersed in 49 to 51 °C water than control fruit. Heat-treated bananas were not different from control fruit in soluble solids content or titratable acidity, however the conversion of starch to sugars was reduced at higher temperatures and exposure times. Bananas exposed for 20 minutes to hot water had delayed respiratory peaks and ethylene production, especially at 51 °C. Mild peel injury was observed on fruit exposed to higher temperatures (49 to 51 °C) for longer durations (15 or 20 minutes).

HortScience ◽  
1991 ◽  
Vol 26 (3) ◽  
pp. 286-287 ◽  
Author(s):  
Guy J. Hallman

`Arkin' carambolas (Averrhoa carambola L.) were subjected to the fruit fly quarantine treatments of hot water immersion at 43.3 to 43.6C for 55 or 70 rein, 46.0 to 46.3C for 35 or 45 rein, or 49.0 to 49.3C for 25 or 35 rein, or vapor heat at 43.3 to 43.6C for 90 to 120 rein, 46.0 to 46.3C for 60 or 90 rein, or 49.0 to 49.3C for 45 or 60 min. Marketability, color, weight loss, internal appearance, flavor, total acids, and soluble solids content were determined. The 49.0 to 49.3C treatments resulted in excessive damage to the carambolas 2 to 4 days after treatment. There were no statistically significant differences in the variables measured among the other treatments and control; however, heat-treated carambolas appeared duller in color than control fruits. Overall, fruit treated at 46.0 to 46.3C lost significantly more weight than that treated at 43.3 to 43.6C.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 737-740 ◽  
Author(s):  
Zisheng Luo

Mei (Prunus mume `Daqinghe') fruit were immersed in 20 °C (control), 47 °C (HWT47), 50 °C (HWT50), or 53°C (HWT53) water for 3 min after harvest, then stored at 20 °C. Firmness, peel color, chlorophyll, chlorophyllase activity, soluble solids content (SSC), titratable acidity (TA), respiration, ethylene production, and pectinmethylesterase (PME) and polygalacturonase (PG) activity were monitored to determine the effects of hot water treatment in delaying fruit ripening. Control fruit displayed a typical climacteric pattern of respiration and ethylene production. Peak CO2 production and ethylene production were observed 6 days after harvest. Fruit softening was accompanied by decreases in hue angle, chlorophyll content, SSC, and TA and increases in chlorophyllase and PME and PG activity. Hot water treatment delayed the onset of the climacteric peaks of CO2 and ethylene production. The delays were associated with delays in fruit softening, consistent with lags in the rise of PME and PG activity; delays in yellowing and chlorophyll breakdown, consistent with lags in the rise of chlorophyllase activity; and delays in loss of SSC and TA. The shelf life of fruit increased by 6 days, or 60%, with HWT47, and by 8 days, or 80%, with HWT50 or HWT53.


2001 ◽  
Vol 41 (6) ◽  
pp. 793 ◽  
Author(s):  
K. K. Jacobi ◽  
E. A. MacRae ◽  
S. E. Hetherington

The effects of conditioning and hot water treatments on immature and mature ‘Kensington’ mangoes were examined. A hot water treatment of 47°C fruit core temperature held for 15 min increased weight loss (50%), fruit softness (15%), disrupted starch hydrolysis and interacted with maturity to reduce the skin yellowness (40–51%) of early harvested fruit. Immature fruit were more susceptible to hot water treatment-induced skin scalding, starch layer and starch spot injuries and disease. Conditioning fruit at 40°C for up to 16 h before hot water treatment accelerated fruit ripening, as reflected in higher total soluble solids and lower titratable acidity levels. As fruit maturity increased, the tolerance to hot water treatment-induced skin scalding and the retention of starch layers and starch spots increased and susceptibility to lenticel spotting decreased. A conditioning treatment of either 22° or 40°C before hot water treatment could prevent the appearance of cavities at all maturity levels. The 40°C conditioning temperature was found to be more effective in increasing fruit heat tolerance than the 22°C treatment; the longer the time of conditioning at 40°C, the more effective the treatment (16 v. 4 h). For maximum fruit quality, particularly for export markets, it is recommended that mature fruit are selected and conditioned before hot water treatment to reduce the risk of heat damage.


2021 ◽  
pp. 108201322098310
Author(s):  
Noelia Castillejo ◽  
Ginés Benito Martínez-Hernández ◽  
Francisco Artés-Hernández

The effect of revalorized Bimi leaves (B) and/or mustard (M) addition, as supplementary ingredients, to develop an innovative kale (K) pesto sauce was studied. Microbial, physicochemical (color, total soluble solids content -SSC-, pH and titratable acidity –TA-) and sensory quality were studied during 20 days at 5 °C. Bioactive compounds changes (total phenolics, total antioxidant capacity and glucoraphanin contents) were also monitored throughout storage. The high TA and pH changes in the last 6 days of storage were avoided in the K+B pesto when adding mustard, due to the antimicrobial properties of this brassica seed. SSC was increased when B + M were added to the K pesto, which positively masked the kale-typical bitterness. Mustard addition hardly change yellowness of the K pesto, being not detected in the sensory analyses, showing K+B+M pesto the lowest color differences after 20 days of shelf life. The addition of Bimi leaves to the K pesto enhanced its phenolic content while mustard addition did not negatively affect such total antioxidant compounds content. Finally, mustard addition effectively aimed to glucoraphanin conversion to its bioactive products. Conclusively, an innovative kale pesto supplemented with Bimi by-products was hereby developed, being its overall quality well preserved up to 20 days at 5 °C due to the mustard addition.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Christopher Menzel

Five strawberry (Fragaria × ananassa Duch.) cultivars were grown in Queensland, Australia to determine whether higher temperatures affect production. Transplants were planted on 29 April and data collected on growth, marketable yield, fruit weight and the incidence of small fruit less than 12 g until 28 October. Additional data were collected on fruit soluble solids content (SSC) and titratable acidity (TA) from 16 September to 28 October. Minimum temperatures were 2 °C to 4 °C higher than the long-term averages from 1965 to 1990. Changes in marketable yield followed a dose-logistic pattern (p < 0.001, R2s = 0.99). There was a strong negative relationship between fruit weight (marketable) and the average daily mean temperature in the four or seven weeks before harvest from 29 July to 28 October (p < 0.001, R2s = 0.90). There were no significant relationships between SSC and TA, and temperatures in the eight days before harvest from 16 September to 28 October (p > 0.05). The plants continued to produce a marketable crop towards the end of the season, but the fruit were small and more expensive to harvest. Higher temperatures in the future are likely to affect the economics of strawberry production in subtropical locations.


Author(s):  
Robert D. McIntyre ◽  
Michael J. Zurawlew ◽  
Samuel J. Oliver ◽  
Andrew T. Cox ◽  
Jessica A. Mee ◽  
...  

Author(s):  
R. G. Mansfield ◽  
S. P. Hoekstra ◽  
J. J. Bill ◽  
Christof A. Leicht

Abstract Purpose Passive elevation of body temperature can induce an acute inflammatory response that has been proposed to be beneficial; however, it can be perceived as uncomfortable. Here, we investigate whether local cooling of the upper body during hot water immersion can improve perception without inhibiting the interleukin-6 (IL-6) response. Methods Nine healthy male participants (age: 22 ± 1 years, body mass: 83.4 ± 9.4 kg) were immersed up to the waist for three 60-min water immersion conditions: 42 °C hot water immersion (HWI), 42 °C HWI with simultaneous upper-body cooling using a fan (FAN), and 36 °C thermoneutral water immersion (CON). Blood samples to determine IL-6 plasma concentration were collected pre- and post-water immersion; basic affect and thermal comfort were assessed throughout the intervention. Results Plasma IL-6 concentration was higher for HWI and FAN when compared with CON (P < 0.01) and did not differ between HWI and FAN (P = 0.22; pre to post, HWI: 1.0 ± 0.6 to 1.5 ± 0.7 pg·ml−1, FAN: 0.7 ± 0.5 to 1.1 ± 0.5 pg·ml−1, CON: 0.5 ± 0.2 to 0.5 ± 0.2 pg·ml−1). At the end of immersion, basic affect was lowest for HWI (HWI: − 1.8 ± 2.0, FAN: 0.2 ± 1.6, CON 1.0 ± 2.1, P < 0.02); thermal comfort for HWI was in the uncomfortable range (3.0 ± 1.0, P < 0.01 when compared with FAN and CON), whereas FAN (0.7 ± 0.7) and CON (-0.2 ± 0.7) were in the comfortable range. Conclusion Local cooling of the upper body during hot water immersion improves basic affect and thermal comfort without inhibiting the acute IL-6 response.


1993 ◽  
Vol 86 (4) ◽  
pp. 1167-1170 ◽  
Author(s):  
Arnold H. Hara ◽  
Trent Y. Hata ◽  
Benjamin K. S. Hu ◽  
Victoria L. Tenbrink

2017 ◽  
Vol 312 (3) ◽  
pp. R281-R291 ◽  
Author(s):  
Kate N. Thomas ◽  
André M. van Rij ◽  
Samuel J. E. Lucas ◽  
James D. Cotter

Passive heat induces beneficial perfusion profiles, provides substantive cardiovascular strain, and reduces blood pressure, thereby holding potential for healthy and cardiovascular disease populations. The aim of this study was to assess acute responses to passive heat via lower-limb, hot-water immersion in patients with peripheral arterial disease (PAD) and healthy, elderly controls. Eleven patients with PAD (age 71 ± 6 yr, 7 male, 4 female) and 10 controls (age 72 ± 7 yr, 8 male, 2 female) underwent hot-water immersion (30-min waist-level immersion in 42.1 ± 0.6°C water). Before, during, and following immersion, brachial and popliteal artery diameter, blood flow, and shear stress were assessed using duplex ultrasound. Lower-limb perfusion was measured also using venous occlusion plethysmography and near-infrared spectroscopy. During immersion, shear rate increased ( P < 0.0001) comparably between groups in the popliteal artery (controls: +183 ± 26%; PAD: +258 ± 54%) and brachial artery (controls: +117 ± 24%; PAD: +107 ± 32%). Lower-limb blood flow increased significantly in both groups, as measured from duplex ultrasound (>200%), plethysmography (>100%), and spectroscopy, while central and peripheral pulse-wave velocity decreased in both groups. Mean arterial blood pressure was reduced by 22 ± 9 mmHg (main effect P < 0.0001, interaction P = 0.60) during immersion, and remained 7 ± 7 mmHg lower 3 h afterward. In PAD, popliteal shear profiles and claudication both compared favorably with those measured immediately following symptom-limited walking. A 30-min hot-water immersion is a practical means of delivering heat therapy to PAD patients and healthy, elderly individuals to induce appreciable systemic (chronotropic and blood pressure lowering) and hemodynamic (upper and lower-limb perfusion and shear rate increases) responses.


Sign in / Sign up

Export Citation Format

Share Document