Effect of intercropping cereal crops with forage legumes and source of nutrients on cereal grain yield and fodder dry matter yields

2002 ◽  
Vol 10 (1) ◽  
Author(s):  
D R Mpairwe ◽  
E N Sabiiti ◽  
N N Ummuna ◽  
A Tegegne ◽  
P Osuji
2015 ◽  
Vol 66 (4) ◽  
pp. 308 ◽  
Author(s):  
Alison. J. Frischke ◽  
James R. Hunt ◽  
Dannielle K. McMillan ◽  
Claire J. Browne

In the Mallee region of north-western Victoria, Australia, there is very little grazing of crops that are intended for grain production. The success of dual-purpose crops in other regions in south-eastern Australia with higher and more evenly distributed rainfall has driven interest in assessing the performance of dual-purpose cereals in the region. Five experiments were established in five consecutive years (2009–13) in the southern Mallee to measure the forage production and grain yield and quality response in wheat and barley to grazing by sheep or mechanical defoliation. The first three experiments focused on spring cultivars sown from late April to June, and the last two on winter cultivars planted from late February to early March. Cereal crops provided early and nutritious feed for livestock, with earlier sowing increasing the amount of dry matter available for winter grazing, and barley consistently produced more dry matter at the time of grazing or defoliation than wheat. However, the grain-production response of cereals to grazing or defoliation was variable and unpredictable. Effects on yield varied from –0.7 to +0.6 t/ha, with most site × year × cultivar combinations neutral (23) or negative (14), and few positive (2). Changes in grain protein were generally consistent with yield dilution effects. Defoliation increased the percentage of screenings (grains passing a 2-mm sieve) in three of five experiments. Given the risk of reduced grain yield and quality found in this study, and the importance of grain income in determining farm profitability in the region, it is unlikely that dual-purpose use of current cereal cultivars will become widespread under existing grazing management guidelines for dual-purpose crops (i.e. that cereal crops can be safely grazed once anchored, until Zadoks growth stage Z30, without grain yield penalty). It was demonstrated that early-sown winter wheat cultivars could produce more dry matter for grazing (0.4–0.5 t/ha) than later sown spring wheat and barley cultivars popular in the region (0.03–0.21 t/ha), and development of regionally adapted winter cultivars may facilitate adoption of dual-purpose cereals on mixed farms.


2004 ◽  
Vol 44 (6) ◽  
pp. 607 ◽  
Author(s):  
R. C. Dalal ◽  
E. J. Weston ◽  
W. M. Strong ◽  
K. J. Lehane ◽  
J. E. Cooper ◽  
...  

Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping.Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne.The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.


Author(s):  
C. Benider ◽  
S. Laour ◽  
T. Madani ◽  
A. Gundouz ◽  
H. Kelaleche

Background: The aim of this study is to ascertain the response of dual exploitation of intercrops systems their ability to produce forage and grain. Thus the efficiency of the cereal-legume intercropping on the qualitative and quantitative improvement yield of cereals. Methods: The experiment was conducted at the Setif University Experimental Farm during the years of 2019-20. The experiment was laid out in completely randomize block (CRB) design with three replications. Three cereals namely triticale, oats and barley in association with forage pea and other mixtures with (Vesce commune) were studied. The measure focused on accumulation of dry matter accumulation (DMA), plant height, flag leaf length (FLL), grain yield (GY) and thousand kernels weight (TKW). Result: The results indicate that capacity of intercropping system systems to produce more dry matter than their mono cropping systems, as well as the intercropping systems significantly improved the qualitative and quantitative yield of cereals in all the tested intercropping systems. A positive significant correlation between SH and FLL r = 0.78 in the peas/oats intercrop. Thus use like this positive significant correlation between DMP GY r = 0.94, while the tritical / pea and barley / pea intercropping are characterized by the best DMP, GY and TKW among different tested cropping systems.


2020 ◽  
Vol 23 (1) ◽  
pp. 47-58
Author(s):  
SS Tanu ◽  
P Biswas ◽  
S Ahmed ◽  
SC Samanta

A field experiment was conducted at Agronomy Field Laboratory, Patuakhali Science and Technology University, Dumki, Patuakhali from July 2018 to November 2018 to evaluate the effect of sunflower residues and herbicides on the yield and economic performance of transplanted Aman rice. Weed control methods tested were T1 = weedy check (Unweeded control), T2 = Weed-free check by hand weeding twice, T3 = Pendimethalin, T4 = Pretilachlor, T5 = Butachlor, T6 = Pyrazosulfuron ethyl, T7 = Bensulfuron methyl + Acetachlor, T8 = Bispyriback sodium, T9 = 2,4-D amine, T10 = MCPA, T11 = Sunflower residues, T12 = Sunflower residues + 100% Pyrazosulfuron ethyl, T13 = Sunflower residues + 75% Pyrazosulfuron ethyl, T14 = Sunflower residues + 50% Pyrazosulfuron ethyl. The experiment was laid out in a randomized complete block design with fourteen treatments replicated thrice. Weedy check registered significantly the highest total weed density (354.67 m-2) and total weed dry matter (51.81 g-2) while weed-free treatment by hand weeding twice recorded significantly the lowest total weed density (6.67 m-2) and total weed dry matter 0.49 g-2) . Weedy check produced the highest weed index (34.24%) and hand weeding produced the lowest. Among different herbicides applied alone, butachlor had the lowest total weed density (15 m-2) and total weed dry matter (6.43 g-2) after hand weeding. Hand weeding recorded the highest grain yield (5.14 t ha-1) which was statistically similar to pendimethalin, pretilachlor, butachlor, bensulfuron methyl + acetachlor and sunflower residues + 100% pyrazosulfuron ethyl. Higher grain yield was attributed to a higher number of panicle m-2, number of filled grains panicle-1 and 1000-grain weight. The highest gross margin (22955 Tk. ha-1) and benefit-cost ratio (1.32) were obtained from butachlor. Integration of sunflower residues with pyrazosulfuron ethyl produced effective weed suppression and satisfactory yield comparable to butachlor. Although the integration is less profitable than butachlor the farmers can use this technology as a feasible and environmentally sound approach in transplanted Aman rice field. Bangladesh Agron. J. 2020, 23(1): 47-58


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 99
Author(s):  
Viktorija Gecaitė ◽  
Aušra Arlauskienė ◽  
Jurgita Cesevičienė

Cereal-legume intercropping is important in many low-input agricultural systems. Interactions between combinations of different plant species vary widely. Field experiments were conducted to determine yield formation regularities and plant competition effects of oat (Avena sativa L.)–black medick (Medicago lupulina L.), oat–white clover (Trifolium repens L.), and oat–Egyptian clover (T. alexandrinum L.) under organic farming conditions. Oats and forage legumes were grown in mono- and intercrops. Aboveground dry matter (DM) measured at flowering, development of fruit and ripened grain, productivity indicators, oat grain yield and nutrient content were established. The results showed that oats dominated in the intercropping systems. Oat competitive performance (CPo), which is characterized by forage legumes aboveground mass reduction compared to monocrops, were 91.4–98.9. As the oats ripened, its competitiveness tendency to declined. In oat–forage legume intercropping systems, the mass of weeds was significantly lower compared to the legume monocrops. Oats and forage legumes competed for P, but N and K accumulation in biomass was not significantly affected. We concluded that, in relay intercrop, under favourable conditions, the forage legumes easily adapted to the growth rhythm and intensity of oats and does not adverse effect on their grain yield.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2387
Author(s):  
Santiel Alves Vieira Neto ◽  
Fábio Ribeiro Pires ◽  
João Carlos Madalão ◽  
Douglas Gomes Viana ◽  
Carlos César Evangelista de Menezes ◽  
...  

Given the high costs of agricultural production, especially due to the price of fertilisers, particularly nitrogen, the use of inoculants to supply nitrogen to soybean crops is a widely recommended practice. The objective of this study was to evaluate the feasibility of applying inoculants through seed and planting furrow in soil previously cultivated with soybean and Brazilian native “cerrado” biome soil under greenhouse conditions. Seven treatments were tested: 1) inoculation via seed (inoculant + fungicide + micronutrient), 2) treatment via seed (fungicide + micronutrient), 3) control (only seed), 4) inoculation via furrow-dose 1 (recommended dose), 5) inoculation via furrow-dose 2 (twice the recommended dose), 6) inoculation via furrow-dose 3 (three times the recommended dose) and 7) inoculation via furrow-dose 1 + seed inoculation. We evaluated plant height, fresh and dry matter weight of the aerial part and nodules, number of total, viable and non-viable nodules, number of pods per plant and grain yield. Inoculation was more effective when used in cerrado soil, but soybean performance in treatments without inoculation was higher in previously cultivated soil. Application through furrow proved to be a viable practice due to the similarity of the results obtained with the traditional application by seed.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


Sign in / Sign up

Export Citation Format

Share Document