Feeding concentrates based on individual cow requirements improves the yield of milk solids in dairy cows grazing restricted pasture

2007 ◽  
Vol 47 (5) ◽  
pp. 502 ◽  
Author(s):  
S. C. García ◽  
M. Pedernera ◽  
W. J. Fulkerson ◽  
A. Horadagoda ◽  
K. Nandra

A grazing experiment involving 50 lactating Holstein–Friesian dairy cows was conducted to test the hypothesis that feeding concentrates (range 3–7 kg as fed/cow.day; average 5 kg/cow.day) to grazing cows based on individual (I) cow requirements would increase milk solids yield in comparison to fixed rate (F) allocation to the whole herd (average 5 kg/cow.day for all cows). The experiment comprised two sequential periods that differed only in the way maize silage was offered to cows (either 100% on a feed pad at night or 75% on a feed pad at night, with 25% in a paddock in the morning). Intake of individual cows was estimated using the 13C and n-alkanes method. The rumen degradability of the feeds (lucerne pasture, maize silage and commercial dairy pellets) was measured in parallel, using six rumen-fistulated sheep. Compared with cows in the F group, milk yield and milk fat yield for the I cows increased (P < 0.05) by 3.0 and 11.1%, respectively. As neither milk protein content nor milk protein yield was affected (P > 0.05) by treatment, total milk solids yield (milk fat plus milk protein) was 7.0% higher (P < 0.05) for I cows than for F cows. The increase in milk fat yield was presumably associated with an improved diet nutrient balance in the I cows, as indicated by a significant correlation between fibre intake and milk fat yield for cows in the I group but not for cows in the F group. This is also supported by the results of the rumen degradability of the feeds. In this study, higher-producing cows compensated for their higher requirements by increasing intake of maize silage, rather than pasture, as the former was the less restricted feed on offer. This highlights the importance of offering at least one feed to cows in a less restricted way, in order to enable high-producing cows in the herd to compensate for their higher intake requirements. In conclusion, under the conditions of the present study, feeding concentrates to cows based on individual cow requirements increased milk solids yield at no extra cost.

1998 ◽  
Vol 1998 ◽  
pp. 206-206
Author(s):  
R.J. Dewhurst ◽  
D. Wadhwa ◽  
L.P. Borgida ◽  
D.W.R. Davies ◽  
W.J. Fisher

Falling prices for cereals and beneficial effects on milk protein concentrations may promote greater inclusions of rapidly fermented ingredients in dairy rations. There is, however, a limit to the inclusion of these feeds into dairy rations beyond which performance declines due to sub-acidosis and related disorders. The feed compounder will need to be able to set limits on levels of feeding concentrates according to these risks. The objective of this experiment was to evaluate the effect of feeds of different acidogenicity (Wadhwa et al., 1998) on lactation performance of dairy cows offered diets based on grass- or maize-silage.Twelve multiparous Holstein-Friesian cows in the third month of lactation were used for this experiment. The experimental design involved adaptation and covariance recording on a standard diet (grass silage and 10 kg concentrates per day), followed by three 21-day experimental periods arranged as four 3x3 Latin Squares. The Latin Squares were constrained to a single forage to avoid difficulties in changeovers between grass silage and maize silage.


2017 ◽  
Vol 84 (3) ◽  
pp. 240-247 ◽  
Author(s):  
Ruairi P McDonnell ◽  
Martin vH Staines

This research paper describes the effect of partially replacing wheat with maize grain and canola meal on milk production and body condition changes in early lactation Holstein-Friesian dairy cows consuming a grass silage-based diet over an 83-d period. Two groups of 39 cows were stratified for age, parity, historical milk yield and days in milk (DIM), and offered one of two treatment diets. The first treatment (CON) reflected a typical diet used by Western Australian dairy producers in summer and comprised (kg DM/cow per d); 8 kg of annual ryegrass silage, 6 kg of crushed wheat (provided once daily in a mixed ration), 3·6 kg of crushed lupins (provided in the milking parlour in two daily portions) and ad libitum lucerne haylage. The second treatment diet (COMP) was identical except the 6 kg of crushed wheat was replaced by 6 kg of a more complex concentrate mix (27% crushed wheat, 34% maize grain and 37% canola meal). Lucerne haylage was provided independently in the paddock to all cows, and no pasture was available throughout the experiment. The COMP group had a greater mean overall daily intake (22·5vs20·4 kg DM/cow) and a higher energy corrected milk (ECM) yield (29·2vs27·1 kg/cow;P= 0·047) than the CON cows. The difference in overall intake was caused by a higher daily intake of lucerne haylage in COMP cows (4·5vs2·3 kg DM/cow). The CON group had a higher concentration of milk fat (42·1vs39·3 g/kg;P= 0·029) than COMP cows. Milk protein yield was greater in COMP cows (P< 0·021); however, milk fat yield was unaffected by treatment. It is concluded that partially replacing wheat with canola meal and maize grain in a grass silage-based diet increases voluntary DMI of conserved forage and consequently yields of ECM and milk protein.


1996 ◽  
Vol 62 (1) ◽  
pp. 1-3 ◽  
Author(s):  
P. C. Garnsworthy

AbstractTwenty-eight Holstein/Friesian dairy cows were divided into four groups of seven. From weeks 4 to 15 of lactation they were given a basal diet consisting of 8 kg hay, 2 kg sugar-beet feed and 2 kg grass nuts, together with a concentrate allowance of 8 kg/day. Concentrates for group A were based on cereals and soya (control). Concentrate B contained 60 g protected fat supplement per kg; concentrate C contained 100 g lactose per kg; concentrate D contained 60 g fat supplement and 100 g lactose per kg. Milk yields were 24·6, 27·7, 25·6 and 26·5 kg/day and milk protein concentrations were 32·3, 30·7, 32·7 and 31·9 g/kg for groups A, B, C and D respectively. The effect of fat supplementation on milk yield and protein concentration was significant (P < 0·05) but the effect of lactose was not significant. Milk fat concentration was not significantly affected by treatment. It is concluded that lactose can partially alleviate the depression in milk protein concentration often observed when cows are given protected fat.


Animals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Frank Dunshea ◽  
Kehinde Oluboyede ◽  
Kristy DiGiacomo ◽  
Brian Leury ◽  
Jeremy Cottrell

Betaine is an organic osmolyte sourced from sugar beet that accumulates in plant cells undergoing osmotic stress. Since the accumulation of betaine lowers the energy requirements of animals and, therefore, metabolic heat production, the aim of this experiment was to investigate if betaine supplementation improved milk yield in grazing dairy cows in summer. One hundred and eighteen Friesian × Holstein cows were paired on days in milk and, within each pair, randomly allocated to a containing treatment of either 0 or 2 g/kg natural betaine in their concentrate ration for approximately 3 weeks during February/March 2015 (summer in Australia). The mean maximum February temperature was 30 °C. Cows were allocated approximately 14 kg dry matter pasture and 7.5 kg of concentrate pellets (fed in the milking shed) per cow per day and were milked through an automatic milking system three times per day. Betaine supplementation increased average daily milk yield by over 6% (22.0 vs. 23.4 kg/day, p < 0.001) with the response increasing as the study progressed as indicated by the interaction (p < 0.001) between betaine and day. Milk fat % (p = 0.87), milk protein % (p = 0.90), and milk somatic cell count (p = 0.81) were unchanged by dietary betaine. However, betaine supplementation increased milk protein yield (677 vs. 719 g/day, p < 0.001) and fat yield (874 vs. 922 g/day, p < 0.001) with responses again being more pronounced as the study progressed. In conclusion, dietary betaine supplementation increased milk and component yield during summer in grazing dairy cows.


2005 ◽  
Vol 45 (4) ◽  
pp. 337
Author(s):  
B. C. Granzin

Two experiments were undertaken to determine the effect of timing of protein supplementation on performance of grazing, lactating Holstein–Friesian cows fed maize silage and grain-based concentrate. In experiment 1, 36 cows were fed 0.8 kg DM/day of solvent-extracted cottonseed meal (CSM) either as 1 meal at 1200 hours with maize silage (CSM 1200) or at 1530 hours with concentrate (CSM 1530), or in 2 meals at 0600 and 1530 hours with concentrate (CSM 600 + 1530). In experiment 2, 36 cows were either fed no CSM (control) or fed 1.0 kg DM/day as either CSM 1200 or CSM 600 + 1530. In experiment 1, daily yields of 4% fat-corrected milk (FCM) and milk fat for CSM 600 + 1530 were significantly higher than for CSM 1530 with respective means of 22.8 v. 20.7 L and 895 v. 804 g. Daily yields of FCM and milk fat for CSM 1200 were intermediate (21.7 L and 841 g/cow, respectively). A similar trend for daily protein yield per cow was noted (712, 695 and 666 g for CSM 600 + 1530, 1200 and 1530, respectively). In experiment 2, milk yield differed numerically between CSM 600 + 1530 and other treatments, with means (± s.e.d.) of 24.7 ± 0.78, 22.9 ± 0.78 and 22.9 ± 0.78 L/cow.day for CSM 600 + 1530, CSM 1200 and control, respectively. Mean (± s.e.d.) net energy requirements for milk production and liveweight change tended to be lower for the control (68 ± 3.6 MJ/cow.day) as opposed to CSM 600 + 1530 (79 ± 3.6 MJ/cow.day) and CSM 1200 (76 ± 3.6 MJ/cow.day). Cumulative time where rumen degradable nitrogen:rumen degradable dry matter was less than 22 g/kg were 2, 2 and 3 h for CSM 600 + 1530, CSM 1200 and CSM 1530, respectively, in experiment 1, and 6, 4 and 2 h for the control, 1200 and CSM 600 + 1530, respectively, in experiment 2. No differences in rumen ammonia-N concentrations were noted between treatments in experiment 1. In experiment 2, a significantly lower mean (± s.e.d.) rumen ammonia-N concentration was recorded for the control at 1530 hours (62 ± 14.1 mg/dL) in comparison to CSM 600 + 1530 (114 ± 14.1 mg/dL) and CSM 1200 (119 ± 14.1 mg/dL). These experiments show that for grazing dairy cows supplemented with maize silage and grain-based concentrate, feeding a daily aliquot of CSM as 2 meals at 0600 and 1530 hours rather than 1 meal at 1200 or 1530 hours improves milk production.


1986 ◽  
Vol 43 (1) ◽  
pp. 27-36 ◽  
Author(s):  
J. B. Moran

ABSTRACTTwo experiments are described in which dairy cows in early lactation were individually offered ad libitum complete diets containing firstly rolled barley, wheat or oats comprising proportionately 0·6 of the total dry matter (DM) and seeondly, whole oats, rolled oats or whole oats soaked in sodium hydroxide comprising proportionately 0·5 of the total DM. Organic-matter (OM) digestibility was measured using chromium III oxide as an external faecal marker and production of milk, milk fat and milk protein were monitored. Rumen digestion rates of each grain type were measured in sacco using non-lactating cows.In the first experiment, voluntary DM intakes did not differ between diets, OM digestibilities were, in decreasing order, wheat > barley > oats, and faecal starch concentrations were, in decreasing order, barley > wheat > oats. Cows given oats produced the most milk and milk fat while cows given wheat produced the most milk protein. Digested OM was used most efficiently by cows given oats and their greater productivity was attributed partly to higher levels of dietary fibre and lipid.In the second experiment, cows fed alkali-treated oats had higher (though non-significant) DM intakes and produced the most milk, milk fat and milk protein. Excretion rates of whole grain from cows given treated or untreated whole oats did not differ, but grain weight loss in transit through the gut was higher with the alkali-treated grain. Food intakes and yields of milk and milk solids were similar in cows given either whole untreated or coarsely rolled oats.


Author(s):  
A Gavelis ◽  
V. Þilaitis ◽  
A Juozaitis ◽  
V. Juozaitienë ◽  
G. Urbonavièius ◽  
...  

The aim of this study was to evaluate relationship between milk progesterone concentration (P4) and milk traits at the start of estrus time and 12h after start of the estrus in dairy cows. The 96 milk samples of 48 Lithuanian dairy cows without reproduction disorders and 90–100 days after calving were evaluated. Cows were classified into two groups based on milk yield per day: less than 30 kg (n=20) and e”30 kg (n=28). Data were categorized by milk fat and protein content at the start estrus and 12h after start of estrus to evaluate relationship between P4 and milk traits examined. P4 at estrus time in dairy cows was significantly positively correlated with milk yield (P less than 0.001), whereas it was negatively correlated with milk protein (P less than 0.05-P less than 0.01) and fat at 12h after start of estrus. Dairy cows with F/P from 1.0 to 1.5 had the lowest P4 in milk. Results of the pregnancy in dairy cows were related with lower P4 and milk yield level (P less than 0.001), higher milk fat (P less than 0.05) and milk protein content (P less than 0.001). These cows had 1.90 times lower prevalence of the signs of subclinical ketosis (P less than 0.05) at estrus time when compared with non-pregnant cows. As a result, it was clearly demonstrated that P4 in dairy cows can help to evaluate and improve the reproductive properties of cows.


1990 ◽  
Vol 30 (1) ◽  
pp. 7 ◽  
Author(s):  
SC Valentine ◽  
BD Bartsch

Milk production and composition was determined in Holstein-Friesian cows fed either 3.5 or 7.0 kg dry matter (DM) daily of lupin grain, pea grain, faba bean grain or barley grain with or without 1.5% added urea, as supplements to an oaten hay based diet. All the grains were hammermilled. Daily yields of milk (L), fat (kg) and protein (kg) were significantly (P<0.05) higher for cows fed lupin (20.0, 0.81, 0.57), pea (18.9, 0.80, 0.56) and faba bean (18.9, 0.79,0.55) grains compared with those of cows fed barley grain with (17.8, 0.73, 0.51) or without (18.0, 0.71, 0.52) urea. Yields of milk (L), fat (kg) and protein (kg) and milk protein content (g/kg) were significantly (P<0.05) higher when 7.0 kg DM (19.5, 0.80, 0.57, 29.6) compared with 3.5 kg DM (18.0,0.73,0.51,29.0) of grain was fed. There were no significant differences between treatments in hay DM intake by cows fed 3.5 kg DM of grain daily. A significantly (P<0.05) higher milk fat production per unit DM intake was recorded for cows fed legume compared with barley grain. There were generally higher returns above grain cost for cows fed legume compared with barley grain and for cows fed 4 kg compared to 8 kg daily of grain. It was concluded that it was more economical to feed 3.5 kg DM of legume grain compared with 3.5 kg DM of barley grain, with or without urea, as supplements for cows offered cereal hay in early lactation. However, the economics of feeding 7.0 kg DM of legume grain compared with 7.0 kg DM of barley grain and 7.0 kg DM compared with 3.5 kg DM of grain will depend on the costs of relative changes in hay intake associated with these practices.


1998 ◽  
Vol 1998 ◽  
pp. 201-201
Author(s):  
R. H. Phipps ◽  
A. K. Jones ◽  
J.G. Perrot

An earlier study conducted at the Centre for Dairy Research (Phipps et al. 1996) using a total mixed ration (TMR) based on maize silage, showed that when distillers grains wheat and molassed sugar beet feed (MSBF) replaced cereal and protein supplements, milk yield and dry matter (DM) intake were maintained but there was a large and significant reduction in milk fat and a small but significant reduction in milk protein. This depression in milk protein was attributed to the high oil content of distillers grains, which would have reduced fermentable metabolisable energy intake which in turn may have adversely affected microbial protein synthesis and reduced milk protein content. The aim of the current study was to devise a nutritional regime using distillers grains maize (DGM) and MSBF in a TMR which would allow milk fat content to be substantially reduced without compromising either DM intake, milk yield or milk protein content.


1994 ◽  
Vol 45 (8) ◽  
pp. 1751 ◽  
Author(s):  
CR Stockdale

A penfeeding experiment, involving 29 lactating dairy cows, was undertaken to assess the use of Persian clover (Trifolium resupinaturn) herbage instead of perennial ryegrass (Lolium perenne)-dominant herbage as the basal ration in diets in which maize silage (0 to 10.6 kg DM/cow day-1) was used as a supplement. This was supported by a second experiment in which 16 cows grazed limited amounts of Persian clover pasture (herbage allowance of 16.5 kg DM/cow day-1) and were supplemented with various amounts of maize silage (0 to 8.3 kg DM/cow daym-1). In the pen experiment, feeding maize silage to cows grossly underfed with perennial ryegrass pasture resulted in a marginal response to additional feeding of 0.9 kg milk for each of the first 5 kg DM of supplement eaten. This level of supplementary feeding constituted about 40% of the diet. Thereafter, maize silage resulted in virtually no additional milk and the best fed cows only produced about 20 kg of milk. A much greater response in milk yield (1.4 kg milk/kg DM of additional maize silage eaten) was obtained when Persian clover was substituted as the basal ration. There were no differences in milk composition or changes in body condition between cows offered the different basal herbages. Milk fat content averaged 3.9% across all cows, while milk protein content and change in body condition increased by 0.03% and 0.13 units for each additional kg DM of maize silage eaten each day. In the grazing experiment, when a small amount of maize silage was fed to the cows, the marginal return was 1.2 kg milk for each additional kg DM of maize silage eaten. This is only slightly lower than that reported for the indoor feeding study. A major reason for the good response was the negligible substitution of maize silage for Persian clover that occurred with the first increment of supplement in the diet. With higher levels of maize silage feeding, no extra milk was produced. It was the increase in the level of substitution at the higher levels of maize silage that eliminated the possibility of additional responses in milk production.


Sign in / Sign up

Export Citation Format

Share Document