An overview of the international context for greenhouse gas reductions

2008 ◽  
Vol 48 (2) ◽  
pp. 251
Author(s):  
Helen Plume ◽  
Roger Lincoln ◽  
Hayden Montgomery

The international context for addressing greenhouse gases, including those from agriculture, is presented. The Kyoto Protocol rules are set for the first commitment period from 2008 to 2012. During this period, industrialised country parties (countries that have both signed and ratified the agreement) are to collectively reduce total greenhouse gas emissions by 5% below 1990 emission levels. Arrangements for a post-2012 agreement are currently being discussed. Science plays a vital role in identifying options for greenhouse gas emission reductions in the agriculture sector.

Author(s):  
Levent Kutlu

Greenhouse gas emissions have increased rapidly since the industrial revolution. This has led to an unnatural increase in the global surface temperature, and to other changes in our environment. Acknowledging this observation, the United Nations Framework Convention on Climate Change started an international environmental treaty. This treaty was extended by Kyoto protocol, which was adopted on 11 December 1997. Using the stochastic frontier analysis, we analyze the efficiencies of countries in terms of achieving the lowest greenhouse gas emission levels per GDP output in the years between 1990–2015. We find that the average greenhouse gas emission efficiencies of world countries for the time periods 1990–1997, 1998–2007, 2008–2012, and 2013–2015 are 82.40%, 90.37%, 89.54%, and 84.81%, respectively. Moreover, compared to the 1990–1997 period, 92.50%, 79.51%, and 59.84% of the countries improved their greenhouse gas emission efficiencies in the 1998–2007, 2008–2012, and 2013–2015 periods, respectively. Hence, the Kyoto protocol helped in increasing greenhouse emission efficiency. However, this efficiency-boosting effect faded away over time.


EDIS ◽  
2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
J. Van Treese, II ◽  
Edward A. Hanlon ◽  
N. Y. Amponsah ◽  
J. L. Izursa ◽  
J. C. Capece

This 5-page fact sheet gives an overview of two methods for evaluating energy transformations in biofuels production. The Life Cycle Assessment approach involves measurements affecting greenhouse gases, which can be linked to the energy considerations used in the Emergy Assessment. Although these two methods have their basis in energy or greenhouse gas emission evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. We can use them to evaluate the economic environmental component of a biofuel process, and decide which biofuel processes favor sustainability. The intended audiences of this publication are growers, researchers, students, and any other readers interested in agriculture and ecology. Written by J. Van Treese II, E. A. Hanlon, N. Y. Amponsah, J. L. Izursa, and J. C. Capece, and published by the UF Department of Soil and Water Science, March 2013. http://edis.ifas.ufl.edu/ss579


2020 ◽  
Author(s):  
Roland Vernooij ◽  
Marcos Vinicius Giongo Alves ◽  
Marco Assis Borges ◽  
Máximo Menezes Costa ◽  
Ana Carolina Sena Barradas ◽  
...  

Abstract. Landscape fires, often referred to as biomass burning (BB), emit substantial amounts of (greenhouse) gases and aerosols into the atmosphere each year. Frequently burning savannas, mostly in Africa, Australia, and South America are responsible for over 60 % of total BB carbon emissions. Compared to many other sources of emissions, fires have a strong seasonality. Previous research has identified the mitigation potential of prescribed fires in savanna ecosystems; by burning early in the dry season when the vegetation has not fully cured, fires are in general patchier and burn less intense. While it is widely accepted that burned area and the total carbon consumed is lower when fires are ignited early in the dry season, little is known about the seasonality of emission factors (EF) of greenhouse gases. This is important because potentially, higher EFs in the early dry season (EDS) could offset some of the carbon benefits of EDS burning. Also, a better understanding of EF seasonality may improve large-scale BB assessments, which to date rely on temporally-static EFs. We used a sampling system mounted on an unmanned aerial vehicle (UAV) and cavity ring-down spectroscopy to estimate CO2, CO, CH4, and N2O EFs in the Estação Ecológica Serra Geral do Tocantins in the Brazilian states of Tocantins and Bahia. The protected area contains all major Cerrado vegetation types found in Brazil, and EDS burning was implemented on a large scale since 2014. We collected and analyzed over 800 smoke samples during the EDS and late dry season (LDS). Averaged over all measurements, the modified combustion efficiency (MCE) was slightly higher in the LDS (0.976 vs. 0.972) and the CH4 and CO EFs were 13 % and 15 % lower in the LDS compared to the EDS. This seasonal effect was larger in more wood-dominated vegetation types. N2O EFs showed a more complex seasonal dependency, with opposite seasonal trends for savannas that were dominated by grasses versus those with abundant shrubs. We found that the N2O EF for the open cerrado was less than half of those reported so far in the BB literature for savannas. This may indicate a substantial overestimation of the contribution of fires in the N2O budget. Overall, our data implies that in this region, seasonal variability in greenhouse gas emission factors may offset only a small fraction of the carbon mitigation gains in fire abatement programs.


2018 ◽  
Vol 11 (1) ◽  
pp. 47-61
Author(s):  
Vinay Kumar ◽  
Sudip Jana ◽  
Amit Bhardwaj ◽  
R. Deepa ◽  
Saroj Kumar Sahu ◽  
...  

Background: This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011. Results: The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others. Conclusion: Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.


2021 ◽  
pp. 54-61
Author(s):  
N. V. Popov ◽  
◽  
I. L. Govor ◽  
M. L. Gitarskii ◽  
◽  
...  

The average weighted long-term component composition of associated petroleum gas burned at the fields in Russia is obtained, where the volume fractions of carbon dioxide (CO2) and methane (CH4) make up 0.8 and 66.4%, respectively. Based on it, the national emission factors of greenhouse gases from the flaring of associated petroleum gas are developed: the values are equal to 2.76 103 t CO2 and 0.0155 103 t CH4 per 1 106 m3 of the gas burnt. The calculations based on the emission factors led to the 37% increase in total equivalent emission of CO2 and CH4 as compared to the calculations based on the IPCC emission factors. The use of the national emission factors increases the reliability of the estimates of greenhouse gas emissions and the evaluation of their impact on climate.


2013 ◽  
Vol 838-841 ◽  
pp. 2811-2817
Author(s):  
Pu Chang ◽  
Mei Fang Lu ◽  
Jim Jui Min Lin

Carbon footprint of three scrapped cable and wire recycling processing plants was analyzed by examining the annual carbon emission and trend for 2009-2011. Among the six greenhouse gases (CO2, CH4, N2O, SF6, HFCs, and PFCs), the annual emission of CO2 was the highest (>95%), while remaining gases only accounted for less than 5% of the total greenhouse gas emission. When analyzing the collected data based on different frontier categories, Category II (greenhouse gas emission indirect caused by electricity consumption) had the highest emission proportion (>57%). It is because the machines used for the physic-mechanical processing procedure require a lot of electricity. In order to do emission inventory accurately and control the electricity consumption, laws or regulations should stimulate electricity consumption to be recorded and monitored separately for each operation permit. It is also recommended to record and monitor electricity consumption of administration area and the manufacturing/processing area separately. Results of this study revealed that the average emission factor for processing recycled cables and wires using a physic-mechanical method was 0.0474±0.0162 tonnes of CO2e per tonne of material processed. If the calculation was based on the amount of products generated, the EF of average greenhouse gases was 0.1613±0.0589 tonnes of CO2e per tonne of plastics, 0.0766±0.0278 tonnes of CO2e per tonne of copper, 1.7891±1.4572 tonnes of CO2e per tonne of aluminum, and 2.1030±1.6937 tonnes of CO2e per tonne of iron.


2019 ◽  
Vol 118 ◽  
pp. 02006
Author(s):  
Leilei Liu ◽  
Xu Guo ◽  
Jian Ding ◽  
Hongliang Wang

Voluntary emission reduction of greenhouse gases is conducive to reducing carbon dioxide (CO2) emissions and fostering a carbon trading market. Voluntary greenhouse gas emission reduction methodologies can be used to determine project baselines, demonstrate additionality, calculate emission reductions, and develop monitoring plans. Marine fossil fuel combustion is an important source of greenhouse gas emissions in port. Through the implementation of marine shore power system, it is possible to replace fuel consumption with electricity and significantly reduce greenhouse gas emissions during berthing. Through the analysis and study on shore power system, the methodology of voluntary greenhouse gas emission reduction for shore power system is formed, which is conducive to promoting the participation in carbon emissions trading and promoting the promotion and use of shore power system.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1258-1261
Author(s):  
Lu Zhang ◽  
Run He Shi ◽  
Jing Wang

"Kyoto Protocol" came into force on the February 16th, 2005. It introduced rules on the responsibilities of reducing greenhouse gas emission so as to alleviate and deal with problems caused by climate change. Among the three fulfillment mechanisms in "Kyoto Protocol", the Clean Development Mechanism (CDM) is the only one related to developing countries. As one of the most important developing countries in the world, it is urgent for China to make rational use of the CDM to support its high-speed economic development. At this point, nation-scale carbon related data are critical. This paper introduced the acquisition of soil, vegetation and land use/land cover data at a large scale using remotely sensed data and the simulation of carbon sink/source by means of ecosystem models. Remotely sensed data play an important role in the extraction of qualitative and quantitative information for CDM related researches and activities.


Sign in / Sign up

Export Citation Format

Share Document