Comparison of lemon varieties and rootstocks at Mildura, Victoria

1971 ◽  
Vol 11 (48) ◽  
pp. 118
Author(s):  
LM Stafford

Five scions and ten rootstocks were tested in an eight-year trial at Irymple, near Mildura, Victoria. The scions were two old-line Lisbons, a nucellar Eureka, and two old-line Eurekas. Cumulative yields averaged for the ten rootstocks and expressed as a percentage of the best scion were : Rix Lisbon 100, Doncaster Lisbon 99, Frost Nucellar Eureka 95, Rodwell Eureka 89, and Villa Franca Eureka 73. The rootstocks, with their percentage yields in parentheses, were : Rough lemon (100), Cavanagh sweet orange (90), Symons sweet orange (84), Marsh grapefruit (73, Cox sweet orange (74), Cleopatra mandarin (72). Seville sour orange (721, Sampson tangelo (69), Emperor mandarin (69), and Carrizo citrange (30). The poor performance of Carrizo citrange is discussed in terms of virus infection and incompatibility. The incidence and importance of scion overgrowth is also reported and discussed.

1971 ◽  
Vol 11 (48) ◽  
pp. 123 ◽  
Author(s):  
CR Millikan ◽  
EN Bjarnason ◽  
BC Hanger

Five scions and ten rootstocks were tested in an eight-year trial at Irymple, near Mildura, Victoria. The scions were two old-line Lisbons, a nucellar Eureka, and two old-line Eurekas. Cumulative yields averaged for the ten rootstocks and expressed as a percentage of the best scion were : Rix Lisbon 100, Doncaster Lisbon 99, Frost Nucellar Eureka 95, Rodwell Eureka 89, and Villa Franca Eureka 73. The rootstocks, with their percentage yields in parentheses, were : Rough lemon (100), Cavanagh sweet orange (90), Symons sweet orange (84), Marsh grapefruit (73, Cox sweet orange (74), Cleopatra mandarin (72). Seville sour orange (721, Sampson tangelo (69), Emperor mandarin (69), and Carrizo citrange (30). The poor performance of Carrizo citrange is discussed in terms of virus infection and incompatibility. The incidence and importance of scion overgrowth is also reported and discussed.


HortScience ◽  
1992 ◽  
Vol 27 (9) ◽  
pp. 1033-1036 ◽  
Author(s):  
Eliezer S. Louzada ◽  
Jude W. Grosseti ◽  
Frederick G. Gmitter ◽  
Beatriz Nielsen ◽  
J.L. Chandler ◽  
...  

Protoplast culture following polyethylene glycol-induced fusion resulted in the regeneration of vigorous tetraploid somatic hybrid plants from eight complementary parental rootstock combinations: Citrus reticulata Blanco (Cleopatra mandarin) + C. aurantium L. (sour orange), C. reticulata (Cleopatra mandarin) + C. jambhiri Lush (rough lemon), C. reticulata (Cleopatra mandarin) + C. volkameriana Ten. & Pasq. (Volkamer lemon), C. reticulata (Cleopatra mandarin) + C. limonia Osb. (Rang-pur), C. sinensis (L.) Osb. (Hamlin sweet orange) + C. limonia (Rangpur), C. aurantium (sour orange) + C. volkameriana (Volkamer lemon) zygotic seedling, C. auruntium hybrid (Smooth Flat Seville) + C. jambhiri (rough lemon), and C. sinensis (Valencia sweet orange) + Carrizo citrange [C. paradisi Macf. × Poncirus trifoliata (L.) Raf.]. Diploid plants were regenerated from nonfused callus-derived protoplasts of Valencia sweet orange and Smooth Flat Seville and from nonfused leaf protoplasts of sour orange, Rangpur, rough lemon, and Volkamer lemon. Regenerated plants were classified according to leaf morphology, chromosome number, and leaf isozyme profiles. All somatic hybrid plants were tetraploid (2n = 4× = 36). One autotetraploid plant of the Volkamer lemon zygotic was recovered, apparently resulting from a homokaryotic fusion. These eight new citrus somatic hybrids have been propagated and entered into field trials.


Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 1013-1017 ◽  
Author(s):  
J.-W. Hyun ◽  
L. W. Timmer ◽  
S.-C. Lee ◽  
S.-H. Yun ◽  
S.-W. Ko ◽  
...  

Two scab diseases are recognized currently on citrus: (i) citrus scab caused by Elsinoe fawcettii, which has several pathotypes; and (ii) sweet orange scab caused by E. australis. Pathogenicity and cultural characteristics among 36 isolates collected from Jeju Island were investigated. Of 30 isolates from satsuma mandarin, yuzu, and kinkoji, all were E. fawcettii; 27 were similar to the Florida broad host range pathotype and 3 were similar to the Florida narrow host range pathotype by inoculation of differential hosts. Six isolates from natsudaidai were nonpathogenic to satsuma mandarin, rough lemon, sour orange, grapefruit, cleopatra mandarin, and natsudaidai leaves, and were only pathogenic to natsudaidai fruit. Isolates from natsudaidai usually produced unique tomentose colonies on potato dextrose agar compared with isolates from other citrus species. The colonies were relatively fast growing, radially sulcate, larger, and more expansive than the gummy, mucoid colonies of other isolates. Isolates from Florida, Australia, Argentina, and Jeju Island (Korea) were genetically differentiated using random amplified polymorphic DNA markers. E. fawcettii from Korea, Florida, and Australia, E. australis from Argentina, and natsudaidai isolates clustered closely within groups, but were clearly distinguishable among groups.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 523-533 ◽  
Author(s):  
William S. Castle ◽  
James C. Baldwin ◽  
Ronald P. Muraro ◽  
Ramon Littell

Two field experiments with ‘Valencia’ sweet orange [Citrus sinensis (L.) Osb.] trees propagated on 12 rootstocks were conducted in commercial orchards. The objectives were to compare rootstock horticultural performance between two locations with soils representative of the Central Florida Ridge (AP) and coastal flatwoods (I), the major citrus-growing regions in Florida, and to see if financial analysis would provide an improved basis for interpreting rootstock performance. The randomized complete-block trials involved six-tree plots replicated eight or 10 times at planting densities of 358 trees (AP) or 252 trees (I)/ha, respectively. Tree growth and survival, yield, and juice quality were measured for 15 years. When losses occurred, trees were replaced annually with another one on the same rootstock. The data of seven rootstocks were subjected to a financial interpretation of three scenarios: tree loss and tree loss with or without tree replacement using the discounted cash flow and internal rate of return methods at a 15% rate. At the flatwoods location, when differences among replications became apparent on several rootstocks, soil data were collected to study its possible association to tree performance; also in this trial, 400-kg fruit samples were differentially harvested in 2 successive years from mature trees on each of five commercial rootstocks when the juice soluble solids/acid ratio was near 15. The juice was extracted, pasteurized, and evaluated for flavor by an experienced taste panel. The horticultural data obtained for trees on specific well-studied rootstocks [Volkamer (C. volkameriana Ten. & Pasq.)] and rough (C. jambhiri Lush.) lemons, Carrizo citrange [C. sinensis × Poncirus trifoliata (L.)], sour orange [C. aurantium (L.)], Cleopatra mandarin (C. reshni Hort. ex Tan.), trifoliate orange (P. trifoliata), a selection of sweet orange (C. sinensis), and Swingle citrumelo (C. paradisi Macf. × P. trifoliata) at both locations were typical of their well-documented performance in Florida and elsewhere. Tree losses were virtually only from citrus blight and ranged from none (sour orange) to greater than 50% (Volkamer and rough lemons) at both locations, although tree loss began later at the Central Florida location. ‘Valencia’ cuttings (only at the flatwoods site) were long-lived and cropped well for their smaller size compared with the budded trees. Taste panelists were not able to distinguish differences over two seasons among pasteurized ‘Valencia’ juices produced from trees on different rootstocks and normalized by soluble solids/acid ratio. Yield and planting density were the main factors affecting financial outcome; also, in the highly variable soils of the coastal flatwoods, trees growing in sites with greater depth to an argillic layer had 30% to 200% higher yields. Trees on Volkamer lemon had only ≈50% survival at both locations but had the highest ($7,338/ha I) or one of the highest cash flows ($13,464/ha AP) as compared with one of the commercial standards, Carrizo citrange ($6,928 I; $16,826 AP), which had only ≈25% tree loss. Inclusion of financial analysis, with certain limitations, was concluded to considerably improve rootstock selection decisions compared with selection based only on horticultural data.


1983 ◽  
Vol 34 (2) ◽  
pp. 133 ◽  
Author(s):  
AM Grieve ◽  
RR Walker

Seedlings of a range of citrus rootstocks were grown under glasshouse conditions and supplied with dilute nutrient solution containing either 0 or 50 mM NaCl. The partitioning of accumulated chloride and sodium into and within the major organs was compared between plants of Rangpur lime (Citrus reticulata var. austera hybrid?), Trifoliata (Poncirus trifoliata) and sweet orange (C. sinensis). Rootstocks differed in their leaf and stem chloride and sodium concentrations, but there was little or no difference between the rootstocks in root chloride and sodium concentrations. The lowest leaf chloride and sodium concentrations were found in the top region of shoots of all rootstocks. The different patterns of accumulation of chloride and sodium found in the three rootstocks were consistent with the existence of apparently separate mechanisms which operate to limit the transport of these two ions from the roots into the young leaves of citrus plants. The chloride excluding ability of 10 rootstocks and two hybrids was also compared and assessed in relation to rootstock vigour. Sampling from the middle leaves on salt-treated plants enabled a distinction to be made between rootstocks in their chloride accumulation properties. Cleopatra mandarin (C. reticulata), Rangpur lime, Macrophylla (C. macrophylla) and Appleby smooth Seville (C. paradisi x C. sinensis) accumulated significantly less chloride than did Trifoliata and rough lemon (C. jambhiri). Differences in chloride accumulation properties between rootstocks were unrelated to rootstock vigour.


2004 ◽  
Vol 129 (4) ◽  
pp. 594-598 ◽  
Author(s):  
Graham H. Barry ◽  
William S. Castle ◽  
Frederick S. Davies

Juice quality of `Valencia' sweet orange [Citrus sinensis (L.) Osb.] trees on Carrizo citrange [C. sinensis × Poncirus trifoliata (L.) Raf.] or rough lemon (C. jambhiri Lush.) rootstocks was determined for fruit harvested by canopy quadrant and separated into size categories to ascertain the direct role of rootstock selection on juice soluble solids concentration (SSC) and soluble solids (SS) production per tree of citrus fruit. SS production per fruit and per tree for each size category was calculated. Juice quality was dependent on rootstock selection and fruit size, but independent of canopy quadrant. Fruit from trees on Carrizo citrange had >20% higher SSCs than fruit from trees on rough lemon, even for fruit of the same size. Large fruit accumulated more SS per fruit than smaller fruit, despite lower juice content and SSC. Within rootstocks, SS content per fruit decreased with decreasing fruit size, even though SSC increased. Rootstock effect on juice quality was a direct rather than an indirect one mediated through differences in fruit size. The conventional interpretation of juice quality data that differences in SSC among treatments, e.g., rootstocks or irrigation levels, or fruit size, are due to “dilution” of SS as a result of differences in fruit size and, hence, juice volume, is only partly supported by these data. Rather, accumulation of SS was greater for fruit from trees on Carrizo citrange than rough lemon by 25% to 30%.


Author(s):  
Mehmet Yaman ◽  
Hasan Pınar ◽  
Ubeyit Seday ◽  
Duygu Altınöz ◽  
Aydın Uzun ◽  
...  

Just because of geographical spread, citrus species generally grow in places sensitive to salinity. Testing methods have a significant role in breeding and cultivar development programs. This study was conducted to investigate in vitro salt response of Cleopatra mandarin (Citrus reshni Tan.), sour orange (Citrus aurantium L.), rough lemon (Citrus jambhiri Lush.), Volkamer lemon (Citrus volkameriana Tan & Pasq.), Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osbeck) and trifoliate orange (Poncirus trifoliata Raf.) rootstocks at different NaCl concentrations. Seeds were germinated in MS medium with 0, 45, 90 and 135 mM NaCl concentrations. In general, the greatest germination rates in all salt concentrations in Volkamer lemon and sour orange rootstocks and the lowest values were observed in rough lemon and trifoliate orange rootstocks. Present findings revealed that in vitro conditions could reliably be used in salt tolerance tests of citrus rootstocks.


2018 ◽  
Vol 28 (6) ◽  
pp. 776-782 ◽  
Author(s):  
Ed Stover ◽  
David G. Hall ◽  
Jude Grosser ◽  
Barrett Gruber ◽  
Gloria A. Moore

The primary objective of this experiment was to determine if the selection of rootstock (Citrus and hybrids) could enhance the development of huanglongbing (HLB)-related symptoms associated with the pathogen Candidatus Liberibacter asiaticus (CLas) in sweet orange (Citrus sinensis). If so, then it may permit more rapid identification of HLB-susceptible compared to HLB-resistant scion types. The secondary objective was to assess the impact of different rootstocks on plant growth parameters and health to determine if trees on any rootstocks displayed reduced sensitivity to HLB-influenced growth restriction. ‘Valencia’ sweet orange was budded on each of the following eight genotypes: Carrizo (C. sinensis × Poncirus trifoliata); Cleopatra (C. reshni); Green-7 {a complex allotetraploid from somatic hybrids [C. clementina × (C. paradisi × C. reticulata) + C. grandis] × [(C. aurantium + (C. sinensis × P. trifoliata)]}; UFR-2 (a complex allotetraploid from somatic hybrids {[C. clementina × (C. paradisi × C. reticulata)] + C. grandis} × (C. reticulata + P. trifoliata)); UFR-4 (same pedigree as UFR-2); rough lemon (C. jambhiri); sour orange (C. aurantium); and US-897 (C. reticulata × P. trifoliata). Half of the trees on each rootstock were bud-inoculated with CLas and half were inoculated with the asian citrus psyllid [ACP (Diaphorina citri)], which is the CLas vector. During both experiments, no rootstock conferred significantly greater HLB symptom severity compared to trees on Carrizo; however, trees on several rootstocks had reduced HLB severity compared to those on Carrizo. Regarding the bud-inoculated trees after 3 years, trees on UFR-4 displayed greater overall health than trees on Carrizo, Green-7, sour orange, and US897, and trees on UFR-4 had a higher percentage of plants with leaf cycle threshold (Ct) values >36 compared with trees on Cleopatra and rough lemon (62 vs. 26-29 respectively). Regarding the ACP-inoculated trees after 3 years, trees on UFR-4 had better overall health than trees on Carrizo, rough lemon, and US-897, and trees on sour orange had a higher percentage of plants with leaf Ct values greater than 36 only compared to Cleopatra and US-897. The percentage increase in the trunk diameter per month over the course of each entire experiment was significantly greater for UFR-2 in both trials than all rootstocks except UFR-4. Only root CLas titers were sometimes significantly higher for trees on other rootstocks compared to those on Carrizo. Although no rootstock provided acceleration of HLB symptom development compared with Carrizo, some rootstocks conferred significantly greater health compared to Carrizo. However, it is uncertain whether the modest differences in health and growth observed in these greenhouse trials would translate to economic benefits in the field.


1994 ◽  
Vol 119 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Luiz A.B.C. Vasconcellos ◽  
William S. Castle

Wood samples were taken from healthy and blighted citrus trees on several rootstocks to describe and compare the xylem anatomy of the healthy trees and to determine if blight altered xylogenesis. Horizontal trunk xylem cores, 6 cm long, were extracted from blighted 18-year-old commercial grapefruit (Citrus paradisi Macf.) trees on rough lemon (RL) (C. jambhiri Lush.), Cleopatra mandarin (CM) (C. reshni Hort. ex Tan.), and Carrizo citrange (CC) [C. sinensis (L). Osb. × Poncirus trifoliata (L.) Raf] and from healthy trees on those rootstocks and sour orange (SO) (C. aurantium L.). Cores were taken from the eastern and western sides of the scion and rootstock of each tree. The cores were divided into 2-cm pieces and cross-sections were prepared for analysis of vessel element (VE) number and diameter in 0.5-cm increments. A sample-size study showed that tree side was not a significant source of variation and that 10 replications were sufficient to detect differences of ≈12% from the overall mean. Among the healthy trees, VE densities and diameters were similar for the trees on CC or RL and larger than those for trees on SO or CM. VEs were generally smaller and at lower densities in the scion than the rootstock. Few VE occlusions were observed in the healthy trees. In the blighted trees, to a depth of 1 cm, VE density increased and diameter decreased compared to the healthy trees. The largest change occurred in the trees on RL and in the rootstock vs. scion trunk part. The frequency of VE amorphous plugs in blighted trees ranged from 1% to 30%. Similar changes in xylem anatomy were not found in trees with citrus tristeza virus or soilborne pests. Trunk water uptake and dye movement patterns in blighted trees were typical for trees with xylem dysfunction.


2012 ◽  
Vol 48 (4) ◽  
pp. 563-572 ◽  
Author(s):  
AYDIN UZUN ◽  
UBEYIT SEDAY ◽  
ERCAN CANIHOS ◽  
OSMAN GULSEN

SUMMARYCitrus trees are often exposed to severe infectious diseases. Mal secco caused by Phoma tracheiphila (Petri) Kantschaveli and Gikashvili is one of the most destructive fungal diseases of lemons (Citrus limon Burm. F.). In the present study, antioxidant enzyme activity in different mal secco-resistant and susceptible citrus rootstocks including Cleopatra mandarin (C. reshni Tan.), sour orange (C. aurantium L.), rough lemon (C. jambhiri Lush.), Volkameriana (C. volkameriana Tan. and Pasq.), Carrizo citrange (Poncirus trifoliata L. Raf. X C. sinensis L. Osbeck) and trifoliate orange (P. trifoliata) was investigated. Possible differences in constitutive levels of these antioxidant enzymes and correlations between enzyme levels and mal secco caused by P. tracheiphila were examined. Among the rootstocks, Cleopatra mandarin was found to be resistant to mal secco, whereas rough lemon, sour orange and trifoliate orange were highly susceptible. Total peroxidase (TPX; EC: 1.11.1.7) activity increased in all infected rootstocks. Ascorbate peroxidase (APX; EC: 1.11.1.11) activity increased in most of the rootstocks and no correlation was found between catalase (CAT; EC: 1.11.1.6) activity and mal secco resistance. This study indicates that overall TPX activity is upregulated and APX activity is up- and down-regulated depending on the type of rootstock in response to P. tracheiphila infection.


Sign in / Sign up

Export Citation Format

Share Document