Transfer of nitrogen from three pasture legumes under periodic defoliation in a field environment

1976 ◽  
Vol 16 (83) ◽  
pp. 863 ◽  
Author(s):  
JR Simpson

Subterranean clover (Trifolium subterraneum), white clover (T. repens) and lucerne (Medicago sativa) were each grown in association with cocksfoot (Dactylis glomerata) for three years in field microplots with periodic removal of herbage. The three legumes produced quite different effects on the nitrogen uptake of the grass and the nitrogen content of the underlying soil. The total nitrogen input to the plant-soil system by subterranean clover was only about half that by either of the two perennial legumes. However, subterranean clover continually donated the most nitrogen to the grass. White clover also increased the nitrogen yield of the grass during the second year, but in the third year, severe competition caused a 45 per cent mortality of grass plants and nitrogen transfer was reduced. Both clovers released about 40 per cent of their apparent nitrogen inputs, distributed between the grass and the soil ; thus soil nitrogen under white clover increased by 160 kg N ha-1 year-1. Lucerne put the most nitrogen into the system but produced only transient increases in grass nitrogen yield. Twenty-one per cent of the apparent nitrogen input of lucerne was donated to the soil.


1985 ◽  
Vol 25 (4) ◽  
pp. 850 ◽  
Author(s):  
MJ Barbetti

The effects of inoculum level, and temperature and humidity regimes on the development of Cercospora blackstem disease (caused by Cercospora zebrina) in subterranean clover (Trifolium subterraneum) were investigated. Mycelial fragments were an effective and reliable inoculum. The incidence, severity, and the rate of disease development increased with increasing period of high humidity after inoculation and with increasing concentrations of inoculum. Disease was greatest at 18/13� (12/12 h, day/ night), followed by 21/16�C, and then l5/10�C While all cultivars of T. subterraneum sprayed with hyphal fragments of C. zebrina became infected, Trikkala and Larisa showed some resistance. Of the alternative pasture legumes, lucerne (Medicago sativa), medic (M. littoralis, M. truncatula), drooping-flowered clover (T. cernuum), strawberry clover (T. fragiferum), rose clover (T. hirtum) and white clover (T. repens) were all susceptible; only serradella (Ornithopus compressus) was resistant.



1991 ◽  
Vol 42 (3) ◽  
pp. 559 ◽  
Author(s):  
DC Edmeades ◽  
FPC Blamey ◽  
CJ Asher ◽  
DG Edwards

A flowing solution culture experiment was conducted in which four temperature pasture grasses and 11 temperate pasture legumes were grown in solutions of low ionic strength for 29 days at six aluminium (Al) levels with average Al3+ activities {Al3+} of 1.0, 5.1, 5.9, 9.9, 20.8, 41.6 8M at pH 4.5. Growth of these species was also measured at pH 5.5 in the absence of Al. In the absence of added Al, lucerne (Medicago sativa) cv. Hunter River and phalaris (Phalaris aquatica) cv. Grasslands Maru grew better at pH 5.5 than at 4.5. The reverse was so for ryegrass (Lolium perenne) cv. Grasslands Nui and subterranean clover (Trifolium subterraneum) cv. Tallarook. Increasing the pH from 4.5 to 5.5 had no effect on the growth of the other 11 species and cultivars tested. Micromolar activities of Al (<10 8M) markedly reduced the growth of all species. Four groups were tentatively identified in terms of their tolerance to Al. The two cultivars of ryegrass and the two red clover (Trifolium pratense) cultivars, together with Lotus corniculatus cv. Maitland, were relatively sensitive to Al. A 50% reduction in total dry matter (TDM) was associated with {Al3+} of 2-3 8M. The four white clover (Trifolium repens) cultivars, tall fescue (Festuca arundinacea) cv. Grasslands Roa, phalaris cv. Grasslands Maru, and Lucerne cv. Hunter River were intermediate in their tolerance, with {Al3+} of 3-5 8M reducing TDM by 50%. The two subterranean clover cultivars were more tolerant to Al than white clover (50% TDM reduction at 5-6 8M {Al3+}. Lotus pedunculatus CV. Grasslands Maku was exceptional in its tolerance to Al. Its growth was unaffected by {Al3+} up to 5 8M and 50% growth reduction was associated with {Al3+} of 7 8M The results of this study emphasize the need to conduct solution culture experiments at realistic solution concentrations and ionic strengths when examining the effects of Al on plant growth.



2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.



1965 ◽  
Vol 16 (6) ◽  
pp. 915 ◽  
Author(s):  
JR Simpson

The extent of underground transference of nitrogen from three pasture legumes, each growing in association with a grass, has been studied in pot culture under several systems of management during the first 12–18 months after sowing. The three legumes performed quite differently. Subterranean clover did not release any nitrogen until senescence and then produced a rapid transference. White clover was competitive for nitrogen until the autumn-winter period. Lucerne released nitrogen gradually over the whole experimental period. Frequent defoliation of the legumes reduced competition for nitrogen by white clover but also reduced transference from the other legumes. Killing the perennial legumes produced only a small temporary increase in transference. Wilting and temporary drying treatments also reduced the transference. Thus there was no evidence that the nitrogen transference from lucerne was due to a shedding or decay of nodules induced by defoliation; it could equally well be due to direct excretion of nitrogen from the intact root system. The significance of the results in pasture establishment in infertile areas is discussed.



1955 ◽  
Vol 6 (2) ◽  
pp. 211 ◽  
Author(s):  
Y Aitken

The value of the annual legume Trifolium subterraneum L. (subterranean clover) in Australian agriculture warrants more precise knowledge of factors affecting flowering and prolific seeding. The effect of temperature and photoperiod on flower initiation in early and later flowering varieties has been investigated in an effort to determine the geographical limits of the use of subterranean clover in Australia. At any time of sowing, the length of the growing season of a variety depends greatly on the variety's response to the temperature level and to the photoperiod of the first few weeks after germination. In all varieties of subterranean clover so far examined flower initiation is accelerated by a period of low temperature. In the later varieties, flower initiation is prevented by an insufficient period of low temperature. The length of the necessary cold period is shortened under longer photoperiod. Early varieties are early flowering because they do not require so long a cold period or so low a temperature as late varieties.



1991 ◽  
Vol 42 (5) ◽  
pp. 893 ◽  
Author(s):  
DC Edmeades ◽  
FPC Blamey ◽  
CJ Asher ◽  
DG Edwards

Ten temperate pasture legumes inoculated with appropriate rhizobia were grown for 31 days in flowing solution culture. Solution ionic strength was approximately 2700 8M and contained inorganic nitrogen (150 , 8M NO3-) only at the commencement of the experiment. Solution pH was maintained at 4.5, 5.0, 5.5 and 6.0. Also, five aluminium (Al) treatments were imposed, with nominal Al concentrations of 0, 3, 6, 12 and 24 8M (2.5, 7.1, 8.3, 11.2 and 24.7 8M Al measured) at pH 4.5. Solution pH <6 . 0 markedly reduced total dry mass (TDM) in all cultivars of white clover (Trifolium repens) cvv. 'Grasslands Pitau, Huia, G18 and Tahora' and red clover (Trifolium pratense) cvv. 'Grassland Turoa and Pawera', and to a lesser extent in the two subterranean clover (Trifolium subterraneum) cvv. 'Tallarook and Woogenellup'. In contrast, solution pH had no effect on the growth of Lotus corniculatus cv. Maitland, while Lotus pedunculatus cv. Maku grew best at pH 4.5. Lotus pedunculatus cv. Maku grew best in solution where the sum of the activities of the monomeric Al species {Alm} was maintained at 5.9 8M. The growth of all other species was decreased with Al in solution, a 50% reduction in TDM being associated with c. 6 8M {Alm] for white clover and subterranean clover, and c. 3 8M in red clover and Lotus corniculatus cv. Maitland.



1988 ◽  
Vol 15 (5) ◽  
pp. 657 ◽  
Author(s):  
AG Davey ◽  
RJ Simpson

Nitrogenase (C2H2-reduction) activity and nodulated root respiration of intact plants of subterranean clover (Trifolium subterraneum L.) cv. Seaton Park nodulated by Rhizobium trifolii WU95 were measured in a flow-through system. Simultaneous declines in nitrogenase activity and respiration were exhibited 2 min after 10% C2H2 had been introduced into the gas stream. Declines in nitrogenase activity and nodulated root respiration provided an estimate of the efficiency of nitrogenase activity (mol CO2 evolved/mol C2H4 produced). The pre-decline rate of nitrogenase activity at time zero was thus calculated as the product of the respiration associated with nitrogenase activity and the reciprocal of the efficiency of nitrogenase activity. Pre-decline rates of nitrogenase activity were similar to peak rates for several pasture legumes. However, post-decline rates of activity were as much as 70% lower than the pre-decline rate. The age of subterranean clover plants had an important influence on the magnitude of the C2H2-induced decline; young plants exhibited the largest C2H2-induced inhibition of nitrogenase activity. Neither sainfoin (Onobrychis viciifolia Scop.) cv. Othello nodulated by Rhizobium sp. CC1108 nor yellow serradella (Ornithopus compressus L.) cv. Pitman nodulated by R. lupini WU425 exhibited C2H2-induced declines in nitrogenase activity. Nitrogenase-linked respiration of subterranean clover at the 14-leaf stage accounted for 50% of total nodulated root respiration. The oxygen diffusion resistance of the nodules increased in the presence of C2H2 but the effect was reversible once C2H2 was removed from the gas atmosphere. The pre-decline rate of acetylene reduction activity of subterranean clover reached a maximum at 10% C2H2. The C2H2-induced decline in nitrogenase activity was lower at subsaturating pC2H2 and was not detected at 0.4% C2H2.



2001 ◽  
Vol 52 (3) ◽  
pp. 415 ◽  
Author(s):  
D. C. Cohen

An in sacco (nylon bag) technique was used to estimate the degradability of dry matter (DM) and crude protein, and to estimate the effective rumen degradability of protein (ERDP), for 3 irrigated clover herbages. Pasture characteristics (nutritive values and leaf: stem ratios) were also described, and relationships to ERDP established. The nutritive value characteristics and degradabilities of white clover (Trifolium repens L.), Persian clover (Trifolium resupinatum L.), and subterranean clover (Trifolium subterraneum L.) were also compared for various regrowth periods (of 3, 4, 6, and 12 weeks). Nutritive value characteristics of clover herbages varied from 9.9 to 11.9 MJ/kg DM for metabolisable energy, 153 to 304 g/kg DM for crude protein, and 209 to 377 g/kg DM for neutral detergent fibre. The leaf: stem ratio correlated well with the crude protein content of the clovers, with herbages consisting of more leaf generally having superior crude protein content (R2 = 0.64, P < 0.001). The effective rumen degradability of protein for clover herbages ranged from 60 g/kg DM for mature (12 week regrowth) subterranean clover to 195 g/kg DM for vegetative (3 weeks regrowth) Persian clover. For clover herbages with a 3-week regrowth period, after initial cutting to 5 cm, and at ruminal outflow rates of 0.08/h, the effective rumen degradability of protein varied from 136 to 195 g/kg DM. A positive relationship between crude protein and ERDP (R2 = 0.82) suggested that ERDP could be estimated for clover herbages that have been previously assessed for crude protein content, obviating the need for in sacco studies. Calculated degradabilities were lower for all clovers when higher ruminal outflow rates were assumed. Using the metabolisable protein system, metabolisable protein supply and metabolisable protein in excess of animal requirements were calculated. Ruminal losses of nitrogen were also estimated for cows consuming white clover of varying regrowth periods in both early and late lactation. It was concluded that metabolisable protein supply is unlikely to limit production in these examples. At regrowth periods of 3 weeks, metabolisable protein contributions from microbial and dietary sources were similar, and twice that required by the animal. Ruminal losses of nitrogen were substantial and amounted to 66—23% of nitrogen intake. In the experiments reported here, if all of the energy required to excrete excess protein (as urea) could instead be used for the production of milk, cows may have produced 0.5mp;mdash;2.0 kg more milk per day. Such losses could potentially be reduced if the protein content and/or degradabilities of clover herbages were reduced, and/or energy rich supplements were offered.



2003 ◽  
Vol 11 ◽  
pp. 193-200
Author(s):  
D.J. Moot ◽  
A.D. Black ◽  
W.R. Scott ◽  
J. Richardon

Seeds of five cultivars of subterranean clover, together with one of white clover, were sown in a wide range of temperature regimes under both controlled environment and field conditions. Results were consistent across temperature regimes and showed that the first trifoliate leaf emerged after 230 °Cd for all subterranean clover cultivars and 309 °Cd for the white clover cultivar. For subterranean clover, exponential leaf appearance commenced after 434 °Cd at the six total leaf stage. At this time, subterranean clover can be defoliated without causing permanent physical damage to seedlings. The field study at Lincoln University showed that subterranean clover that germinated in March produced 44 kg DM/ha/day for 158 days to yield approximately 7 000 kg DM/ha by mid-September. Subterranean clover that germinated in May produced 15 kg DM/ha/day for 120 days to yield only 1 800 kg DM/ha by mid September. These results are discussed in relation to the time of autumn grazing management for subterranean clover, including extrapolation to other climatic areas of New Zealand. Key words: herbage yield, phyllochron, seedling establishment, thermal time, Trifolium subterraneum, T. repens, white clover



Sign in / Sign up

Export Citation Format

Share Document