Uptake and distribution of potassium by grapevine rootstocks and its implication for grape juice pH of scion varieties

1989 ◽  
Vol 29 (5) ◽  
pp. 707 ◽  
Author(s):  
EH Ruhl

Differences in petiole K+ concentration of ungrafted grapevine rootstocks grown under field conditions at Merbein, Victoria, were compared with the rootstock effects on grape juice pH of the scion varieties Chardonnay and Ruby Cabernet. Significant positive correlations were obtained between grape juice pH of the scion varieties on various rootstocks and K+ accumulation in the petioles of ungrafted rootstock vines. Rootstock varieties that contributed to high pH in the grape juice of the scion (e.g. Freedom, Dog Ridge, Rupestris du Lot) showed high K+ concentrations in their petioles, while those rootstocks that contributed to low pH in the grape juice of the scion (e.g. 140 Ruggeri, 1202 Couderc, 110 Richter), had low K+ concentrations in their petioles. In 2 water culture experiments in the glasshouse, K+ uptake and distribution in ungrafted rootstock vines was examined at different K+ levels. In the first experiment the rootstocks 140 Ruggeri and Freedom had similar K+ concentrations in the various plant parts when grown in nutrient solution with 0.1 mmol K+/L. With K+ concentrations of 1, 2, and 10 mmol/L in the nutrient solution Freedom had significantly higher K+ contents in leaves and petioles than 140 Ruggeri. When K+ supply was increased from 1 to 2 mmol/L, K+ concentrations in the various plant parts were not significantly increased. However, when the supply was increased to 10 mmol/L, K t concentrations were significantly different. In the second experiment with K+ levels of 1 and 10 mmol/L, higher K+ contents were obtained in the basal and apical leaves of Dog Ridge and Ramsey compared with 140 Ruggeri, Schwarzmann, 1103 Paulsen and Sultana, while in roots, 140 Ruggeri, 110 Richter and Sultana had the highest K+ contents. Dog Ridge and Rarnsey are both known to increase scion grape juice K+ concentration and pH of the scion variety, while 140 Ruggeri and 1103 Paulsen contribute to low grape juice K+ concentration and pH. The results demonstrate that differences between rootstocks in the extent of K+ accumulation in the shoot are a major determinant of the rootstock effects on grape juice pH. The extent of K+ accumulation can best be measured in basal leaves or petioles. This provides a screening method for the evaluation of rootstocks which restrict K+ accumulation and contribute to lower grape juice pH.

1947 ◽  
Vol 30 (6) ◽  
pp. 493-517 ◽  
Author(s):  
Helen Tredway Graham ◽  
H. A. Blair

1. When the Ringer's solution applied to isolated frog sciatic nerve contains K+ in concentrations greater than 2 x standard, the height of the spike and of the after-potential is decreased, as is the duration of the after-potential; recovery of height and of excitability following response is delayed; degree and duration of supernormal excitability are decreased; postcathodal depression and postanodal enhancement are increased and prolonged. 2. The nerve functions just listed in general all change in the opposite direction when exposed' to increased environmental [Ca++]. (4.5–20 x standard) or decreased [K+] (0.05–0.2 x standard). The effects of decreased [Ca++] (0.20–0.25 x standard) are indeterminate. 3. When [K+] and [Ca++] are both greater than 2 x standard, whatever the ratio between the concentrations the effects characteristic of high [K+] eventually predominate. However, these effects, except for those involving spike height, are preceded by effects characteristic of high [Ca++] when this cation is present in sufficient excess. 4. When [K+] and [Ca++] are reduced to equal low levels (0.1–0.2 x standard), effects characteristic of low [K+] and high [Ca++] are obtained. 5. The experimentally determined order of ability of the environments to produce changes characteristic of high K+ (which is the reverse of the order of their ability to produce changes characteristic of high [Ca++]), is not the order of their K+ or Ca++ concentrations, nor of the ratio between these concentrations (Table II). 6. The results may be explained by the assumption that the functions investigated are all to greater or less degree controlled by (1) the [K+]/[Ca++] ratio and (2) the K+ concentration, at least when this exceeds a critical level. Control by [K+] is more effective for spike height and its recovery after stimulation than for the other functions. The special rôle of K+ is attributed to an unknown specific effect of this ion which Ca++ is unable to oppose. It is suggested that this K+ effect in general becomes marked on the frog nerve functions investigated when the K+ concentration is somewhat above 2 x standard, while the [K+]/[Ca++] ratio must be changed by a factor of 4 or more before it exerts a definite effect on these functions. 7. In standard and in modified cationic environments, nerve functions vary in the ease with which they manifest changes characteristic of high [K+] or of high [Ca++]. 8. The after-potential functions are less completely controlled by the cationic environment than are the other functions investigated.


2004 ◽  
Vol 31 (4) ◽  
pp. 391 ◽  
Author(s):  
Nick Gould ◽  
Michael R. Thorpe ◽  
Peter E. H. Minchin ◽  
Jeremy Pritchard ◽  
Philip J. White

This work relates solute import to elongating root cells in barley to the water relations of the symplastic pathway under conditions of varied plant K+ status. K+ is a major constituent of phloem sieve element (SE) sap, and as an osmoticum, it is believed to have a role in maintaining SE hydrostatic pressure and thus sap flow from source to sink tissue. The hypothesis that the solute import to elongating root cells is linked to pressure driven flow from the sieve tube is examined.Plants were grown in solutions containing either 0.05 mM (low K) or 2.05 mM (high K) K+ concentration. Solute import to the root elongation zone was estimated from biomass accumulation over time accounting for respiration and root elongation rate. SE sap K+ concentration was measured using X-ray microanalyses and osmotic pressure by picolitre osmometry. SE hydrostatic pressure was measured directly with a pressure probe glued onto an excised aphid stylet. Elongating root cell hydrostatic pressure was measured using a cell pressure probe.The low-K plants had lower SE K+ concentration and SE hydrostatic pressure compared to the high-K plants, but the elongating root cell hydrostatic pressure was similar in both treatments, thus the pressure difference between the SE and elongating root cells was less in the low-K plants compared to the high-K plants.The solute import rate to elongating root cells was lower in the low K plants and the reduction could be accounted for as a pressure driven solute flux, with a reduction both in the pressure difference between root sieve elements and elongating cells, and in the sap concentration.


2016 ◽  
Vol 67 (11) ◽  
pp. 1168 ◽  
Author(s):  
Qifu Ma ◽  
Richard Bell

Although soil salinity and potassium (K) deficiency are widespread in agricultural lands, there is a paucity of knowledge about the interactive effects of sodium (Na) and K on the growth and yield of major grain crops. In pot experiments, we examined salt tolerance of canola (Brassica napus L.), narrow-leafed lupin (Lupinus angustifolius L.) and wheat (Triticum aestivum L.), and crop K requirement under Na supply ranging from low to high. Plant growth and seed yield of all three crops were lower at 40 mg K/kg than at 100 mg K/kg soil. Although 100 mg Na/kg (4 dS/m in soil solution) had little effect on canola cv. Boomer and wheat cv. Wyalkatchem, the salt-treated narrow-leafed lupin cv. Mandelup died at 47 days after sowing, regardless of amount of soil K. In low-K soils, canola with 100 mg Na/kg and wheat with 50 mg Na/kg did not show K-deficiency symptoms and produced greater seed yield than plants with nil Na addition. At 100 mg K/kg, Na-induced reduction in growth and yield occurred only to plants with 200 mg Na/kg. However, at 160 mg K/kg, 200 mg Na/kg did not have an adverse effect. In canola and wheat, shoot K concentration increased and shoot Na concentration decreased with increasing amount of soil K; however, high soil K did not reduce shoot Na concentration in narrow-leafed lupin. The study showed that narrow-leafed lupin was very susceptible to salinity, whereas canola and wheat plants were relatively salt-tolerant. The stimulation of growth and yield in canola and wheat by low–moderate Na in low-K soils suggests partial K substitution by Na, and that adaptation of canola and wheat to salt-affected soils can be enhanced by high K supply.


1960 ◽  
Vol 198 (6) ◽  
pp. 1223-1224 ◽  
Author(s):  
W. C. Holland

The effects of varying the extracellular K concentration (K0), ouabain (10–6 m) and acetylcholine (10–5 m) on the Na and K content of the pacemaker region, right atrium, and left atrium have been investigated. The Na content is higher, and K content lower in pacemaker, as compared to atria. Increased K0 elevated K in atria, but had no effect on nodal K. Ouabain caused a net loss of K from atria, but had no effect on pacemaker K. At low K0 acetylcholine reduced K in all regions, while at high K0 this agent increased atrial cell K. It is concluded that ‘active transport’ mechanisms are absent or reduced in pacemaker tissue.


1959 ◽  
Vol 5 (5) ◽  
pp. 425-430 ◽  
Author(s):  
L. F. Welch ◽  
A. D. Scott

An active culture of nitrifying bacteria was established by adding moist garden soil to a high-K nutrient solution and incubating the system at room temperature with adequate aeration. By a succession of transfers into a low-K nutrient solution the soil particles were eliminated and the K level reduced to 0.40 p.p.m. Inoculum from this soil-free, low-K nitrifying culture was then used to study nitrification in buffered nutrient solutions that contained even less K.When the nutrient solutions contained 0.40 p.p.m. K or more, there was no effect of the K level on the nitrification of NH4 added as (NH4)2SO4. Nitrification was impaired, however, when the K level was less than 0.35 p.p.m. In a solution that contained virtually no K there was negligible nitrification after a second transfer was made to eliminate the K added by the original inoculum. Under these conditions, the number of nitrifying bacteria apparently decreased, but some of them persisted for at least 48 days. Upon the addition of K, nitrification occurred to about the same extent as if ample K had always been present.


2000 ◽  
Vol 135 (1) ◽  
pp. 1-10 ◽  
Author(s):  
G. F. J. MILFORD ◽  
M. J. ARMSTRONG ◽  
P. J. JARVIS ◽  
B. J. HOUGHTON ◽  
D. M. BELLETT-TRAVERS ◽  
...  

The effect of different rates of potassium (K) fertilizer on the yield and quality of sugar beet was studied in a series of 26 trials on soils of different type and K index between 1992 and 1997. There were few yield responses even though the majority of trials were on soils of low K index, and large quantities of fertilizer were applied (0–600 kg K/ha). Potassium offtakes (kg/ha) in the harvested beet increased asymptotically, not linearly, with yield and were much larger for a given yield on high K index soils than on low index soils. Commercially acceptable concentrations of beet K for processing are in the range 700 to 1000 mg K/100 g sugar. Concentrations in excess of this decrease the amount of sugar crystallized from the extracted juice. They were not greatly affected by large applications of fertilizer K but were strongly influenced by long-established differences in soil exchangeable K (Kex) due to soil type, previous cropping or manuring history.The asymptotic nature of the K offtake[ratio ]yield relationship was confirmed by factory tarehouse measurements relating to the national sugar beet crop delivered during the 1993–97 UK processing campaigns. Potassium offtakes generally increased linearly with yield up to 60–70 adjusted t of clean beet/ha, but increased little beyond that. The amount of K removed by a 60–70 t/ha crop of beet varied from 70 kg K/ha on low K index sandy loams to 120 kg K/ha on clay soils of K index 3 and above. Further increases in yield decreased the amount of K in fresh beet from 1·7 to 1·4 kg K/t on low K index soils, and from 3·6 to 2·5 kg K/t on high K index soils.An analysis of data from individual fields of commercially grown sugar beet showed that much of the site and season variation in the K content of beet was due to differences in K uptake driven by Kex, and to differential effects of nitrogen (N) supply on K uptake and sugar yield. Regressions on Kex and total crop N (kg/ha) accounted for c. 30 and 50% of the variance in beet K content, respectively, and the two together for over 60%. Total N uptake by the crops ranged from 100 to 550 kg N/ha. The total K content of the crop and the amounts of K in the beet (kg/ha) both increased linearly with crop N over the whole of this range, whereas sugar yield increased asymptotically with total uptakes of N up to 250–300 kg N/ha. Consequently, low yielding crops grown on soils in which N and K were freely available produced beet of poor K quality. However, the asymptotic relationship between beet K (kg/ha) and yield implies that, in many situations, the processing quality of the beet could be improved by increasing yield through better agronomy.


2014 ◽  
Vol 41 (8) ◽  
pp. 790 ◽  
Author(s):  
Qun Shao ◽  
Ning Han ◽  
Tonglou Ding ◽  
Feng Zhou ◽  
Baoshan Wang

SsHKT1;1, a HKT1 homologue, was isolated from the C3 halophyte Suaeda salsa L. and its ion transport properties were investigated in heterologous systems. The expression of SsHKT1;1 suppressed a K+ transport-defective phenotype of the yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake with SsHKT1;1. However, it did not suppress the salt-sensitive phenotype of the yeast strain G19 (Δena1–4), which lacks a major component of Na+ efflux. Transgenic Arabidopsis thaliana (L.) Heynh. plants overexpressing SsHKT1;1 showed enhanced salt tolerance and increased shoot K+ concentration, whereas no significant changes in shoot Na+ concentration were observed. S. salsa was also used to investigate K+ uptake properties under salinity. The K+ transporters in the roots selectively mediated K+ uptake irrespective of external Na+ and their inhibitor did not affect Na+ uptake at low K+. Thus, both molecular and physiological studies provide strong in vivo evidence that SsHKT1;1 mainly acts as a potassium transporter in heterologous expression systems and S. salsa, and that it is involved in salt tolerance by taking part in the maintenance of cytosolic cation homeostasis, particularly, in the maintenance of K+ nutrition under salinity.


2014 ◽  
Vol 38 (5) ◽  
pp. 1469-1477 ◽  
Author(s):  
Delmar Santin ◽  
Eliziane Luiza Benedetti ◽  
Nairam Félix de Barros ◽  
Igor Carvalho de Almeida ◽  
Greice Pereira Leal ◽  
...  

Yerba mate (Ilex paraguariensis) is a tree species native to the subtropical regions of South America, and is found in Brazil predominantly in the southern region. Despite the historical importance in this region, so far, studies on crop nutrition to improve yields are scarce. Thus, this study evaluated the effect of potassium rates on K soil availability, and the yield and nutritional status of yerba mate. The experiment was conducted in São Mateus do Sul, State of Paraná, on a Humox soil, where K2O rates of 0, 20, 40, 80, 160, and 320 kg ha-1 were tested on 7-year-old plantations. The experiment was harvested 24 months after installation by removing approximately 95 % of the canopy that had sprouted from the previous harvest. The soil was evaluated for K availability in the layers 0-10, 0-20, 10-20, and 20-40 cm. The plant parts leaf fresh matter (LM), twigs (TW), thick branches (BR) and commercial yerba mate (COYM), i.e., LM+TW, were analyzed. In addition, the relationship between fresh matter/dry matter (FM/DM) and K concentration in LM, AG and BR were evaluated. The fertilization increased K availability in all evaluated soil layers, indicating good mobility of the nutrient even at low rates. Yerba mate responded positively to increasing K2O rates with higher yields of all harvested components. The crop proved K-demanding, with a maximum COYM yield of 28.5 t ha-1, when 72 mg dm-3 K was available in the 0-20 cm layer. Yerba mate in the plant production stage requires soil K availability at medium to high level; in clayey soil with low K availability, a rate of 300 kg ha-1 K2O should be applied at 24 month intervals to obtain high yields. A leaf K concentration of 16.0 g ha-1 is suitable for yerba mate in the growth stage.


1974 ◽  
Vol 52 (2) ◽  
pp. 166-173
Author(s):  
Mumtaz A. Dinno ◽  
Manuel Schwartz ◽  
Axel K. Olson ◽  
Gaspar Carrasquer

The addition of ethacrynic acid to a concentration of 1 mM in the nutrient solution bathing the frog gastric mucosa in vitro produced an immediate decrease in resistance followed by an increase in resistance and a decrease in H+ secretory rate. The latter effect was irreversible and the former reversible. During the initial phase for nutrient solutions of 4 mM K+ and 79 mM K+ containing 1 mM ethacrynic acid, the decrease in resistance was about 30% and the decrease in the transmembrane potential difference (P.D.) was about 1 mV in the low K+ case and 2 mV in the high K+ case. The addition of ethacrynic acid to a 4 mM K+ nutrient solution containing 1 mM Ba2+ produced initially a 19% decrease in resistance and both positive and negative changes in P.D. In the absence of Ba2+, these results suggest strongly a marked increase of K+ permeability with the possibility of some increase of Cl− permeability. In the presence of Ba2+, as a result due to the increased K+ resistance of the nutrient membrane, ethacrynic acid may affect predominantly either K+ or Cl− permeability.


1981 ◽  
Vol 241 (1) ◽  
pp. C68-C75 ◽  
Author(s):  
B. C. Spalding ◽  
O. Senyk ◽  
J. G. Swift ◽  
P. Horowicz

Small bundles of frog skeletal muscle fibers were loaded with 305 mM K+ and 120 mM Cl-, and 42K+ tracer efflux and influx were measured as a function of external K+ concentration ([K+]o) at a resting potential of -2 mV. As [K+]o was lowered from 305 mM, efflux decreased along a markedly sigmoidal curve, reaching a constant nonzero value at low [K+]o. Influx varied linearly with [K+]o at low [K+]o and more steeply at higher [K+]o. The ratio of influx to efflux was described by the equation: influx/efflux = exp[-n(V - VK)F/RT] with n = 2 at high [K+]o, but the ratio approached this equation with n = 1 at low [K+]o. Efflux did not depend on [K+]o when the membrane potential was raised to +36 mV, whereas at low [K+]o decreasing the membrane potential to -19 mV further activated the efflux. The results are discussed in terms of an inwardly rectifying potassium channel with two or more activating sites within the membrane that bind K+ and are accessible from the external solution.


Sign in / Sign up

Export Citation Format

Share Document