Barley grass control with herbicides in subterranean clover pasture. 1. Effect on pasture in the year of spraying

1993 ◽  
Vol 33 (6) ◽  
pp. 737 ◽  
Author(s):  
DW Stephenson ◽  
GJ Mitchell

Barley grass (Hordeum spp.) in a subterranean clover pasture was controlled with herbicides in the time between the 2-3 leaf stage and flowering. The effects on subsequent pasture production and composition were measured and the interaction between grazing and herbicides was also assessed. Early removal of barley grass reduced dry matter production in winter by an average of 41%. It also allowed an incursion of Indian hedge mustard (Sisymbrium orientale L.). which was suppressed by grazing but comprised an average of 23% ground cover in ungrazed pasture. Loss of total pasture production decreased as the date of herbicide application was delayed from June to September. Broadleaf species compensated for the early removal of barley grass, so that total dry matter production in spring in herbicide-treated areas was higher than in the unsprayed pasture. Fluazifop-p at 32, 53, and 106 g a.i/ha gave, respectively, 94, 91, and 94% reduction in barley grass seedhead density when applied at the 2-3 leaf stage, and 64, 88, and 98% reduction when applied at mid jointing. Application of this herbicide at 53 or 106 g a.i/ha for barley grass control can be delayed until late winter, thereby maintaining winter feed production but avoiding declining palatability and awned barley grass seeds.

1989 ◽  
Vol 29 (6) ◽  
pp. 785 ◽  
Author(s):  
PM Evans ◽  
RS Smith ◽  
JA Carpenter ◽  
TB Koen

Fifteen cultivars of subterranean clover (Trifolium subterraneum L.) and 1 cultivar of balansa clover (Trifolium balansae Boiss.) were screened for tolerance to 2,4-DB, MCPA-Na salt, MCPA amine, bromoxynil and combinations of these herbicides. The clovers were sprayed at the 3-4 trifoliate leaf stage and dry matter production assessed in the following spring. All herbicides reduced clover dry matter production (DM). The least damaging herbicides to subterranean clover were bromoxynil (0.3 kg a.i./ha) and MCPA-Na salt (0.313 kg a.i./ha) which reduced DM production by 23 and 39% respectively. The most damaging were 2,4-DB (0.8 kg a.i./ha) and MCPA amine (0.313 kg a.i./ha) plus bromoxynil (0.3 kg a.i./ha) which reduced DM production by 62 and 56% respectively. The damage caused by MCPA-Na salt (0.5 kg a.i./ha) plus bromoxynil (0.3 kg a.i./ha) was intermediate, reducing clover production by 44%. Second year seedling regeneration was reduced across all herbicide treatments by 32%. Of the currently recommended cultivars, Trikkala was the most tolerant to herbicides, with an average reduction in DM of 37%. Bromoxynil was the herbicide tolerated best by cvv. Enfield, Karridale, Larisa, Mt Barker and Woogenellup. The most effective weed killing treatments were 2,4-DB plus bromoxynil and MCPA-Na salt (0.5 kg a.i./ha) plus bromoxynil(0.3 kg a.i./ha).


1966 ◽  
Vol 67 (2) ◽  
pp. 199-210 ◽  
Author(s):  
A.G. Campbell

1. Net pasture dry matter production and available pasture dry matter were measured over 3 years in a small-scale replica of the study of the effects of dairy cow grazing management and stocking rate reported by McMeekan & Walshe (1963).2. The four treatments were(i) Controlled rotational grazing, light stocking rate (0.95 cows/acre).(ii) Controlled rotational grazing, heavy stocking rate (1.19 cows/acre).(iii) Uncontrolled, set stocked grazing, light stocking rate (0.95 cows/acre).(iv) Uncontrolled, set stocked grazing, heavy stocking rate (1.19 cows/acre).3. The pasture measurement technique employed measured net pasture production (gains through new growth minus losses from all sources). It is argued that this parameter, rather than absolute pasture production, governs the changes in the dry matter feed supply to the grazing animal.


2010 ◽  
Vol 61 (5) ◽  
pp. 353 ◽  
Author(s):  
L. L. Burkitt ◽  
D. J. Donaghy ◽  
P. J. Smethurst

Pasture is the cheapest source of feed for dairy cows, therefore, dairy pastures in Australia are intensively managed to maximise milk production and profits. Although soil testing commonly suggests that soils used for dairy pasture production have adequate supplies of phosphorus (P), many Australian dairy farmers still apply fertiliser P, often by applying smaller rates more frequently throughout the year. This study was designed to test the hypotheses that more frequent, but lower rates of P fertiliser applied strategically throughout the growing season have no effect on dry matter production and P concentration in perennial ryegrass (Lolium perenne L.), when soil extractable P concentrations are above the critical value reported in the literature. Three field sites were established on rain-fed dairy pasture soils ranging in P sorption capacity and with adequate soil P concentrations for maximising pasture production. Results showed that applied P fertiliser had no effect on pasture production across the 3 sites (P > 0.05), regardless of rate or the season in which the P was applied, confirming that no P fertiliser is required when soil extractable P concentrations are adequate. This finding challenges the viability of the current industry practice. In addition, applying P fertiliser as a single annual application in summer did not compromise pasture production at any of the 3 sites (P > 0.05), which supports the current environmental recommendations of applying P during drier conditions, when the risk of surface P runoff is generally lower. The current results also demonstrate that the short-term cessation of P fertiliser application may be a viable management option, as a minimal reduction in pasture production was measured over the experimental period.


1997 ◽  
Vol 37 (2) ◽  
pp. 165 ◽  
Author(s):  
J. S. Dunbabin ◽  
I. H. Hume ◽  
M. E. Ireson

Summary. Perennial ryegrass–white clover swards were irrigated for 3 years every 50, 80 and 120 mm of crop evapotranspiration minus rainfall (ETc–R) and water ponded on the soil surface for either 4, 12 or 24 h at each irrigation. Pasture production and clover content were highly seasonal, peaking in spring and autumn. Frequent irrigation increased dry matter production by an average of 56%. When irrigating at 50 mm ETc–R, dry matter production was decreased by ponding water on plots, 17% for 12 h ponding and 14% if ponded for 24 h. However, when irrigating at an interval of 80 mm ETc–R ponding increased dry matter production by 7% for 12 h ponding and by 25% for 24 h ponding. Ponding also increased production at an irrigation interval of 120 mm ETc–R by 25% for 12 h ponding but only by 2.4% for 24 h ponding. While these increases in dry matter production are large in relative terms the absolute increase in production is small. More water infiltrated per irrigation at longer irrigation intervals, and at longer ponding times. Frequently irrigated, rapidly drained swards used irrigation water most efficiently. The small gain in dry matter production achieved by prolonging ponding at longer irrigation intervals is an inefficient use of water and likely to recharge regional groundwater systems. Oxygen diffusion rate measurements suggested that ponding for as short as 4 h was likely to cause waterlogging stresses and that these stresses were higher when irrigating frequently. The relative increase in waterlogging stress by extending the period of ponding from 4 to 24 h was small.


2016 ◽  
Vol 67 (1) ◽  
pp. 69 ◽  
Author(s):  
M. R. McCaskill ◽  
M. C. Raeside ◽  
S. G. Clark ◽  
C. MacDonald ◽  
B. Clark ◽  
...  

Pastures sown to lucerne (Medicago sativa L.) with a perennial non-legume could increase feed supply relative to traditional pastures based on subterranean clover (Trifolium subterraneum L.). Such mixtures might also be preferable to pure lucerne pastures, which are prone to weed invasion. Yield and water-use efficiency (harvested dry matter per unit evapotranspiration) of mixtures with lucerne or subterranean clover were compared a field experiment established under rainfed conditions at Hamilton, Victoria. Soil moisture and dry matter production were measured over 2 years. Treatments included chicory (Cichorium intybus L.), cocksfoot (Dactylis glomerata L.) and tall fescue (Festuca arundinacea Shreb.) with either lucerne or subterranean clover; pure lucerne; and phalaris (Phalaris aquatica L.) and perennial ryegrass (Lolium perenne L.) with only subterranean clover. In the second year, dry matter production from lucerne mixtures exceeded that of equivalent mixtures with subterranean clover in spring, summer and winter. In spring, the lucerne component continued producing for longer than the clover component through its use of deeper stored soil water, and in summer, lucerne continued to grow slowly after the grass component had entered a drought-induced dormancy. In winter, the contribution from the lucerne component complemented, rather than competed with, that from the non-legume component. Water-use efficiencies during winter–spring ranged from 4 kg ha–1 mm–1 for chicory–clover to 27 kg ha–1 mm–1 for a fescue–lucerne mixture, and during summer–autumn from nil for cocksfoot–clover to 13 kg ha–1 mm–1 for a fescue–lucerne mixture. This study demonstrates that lucerne-based mixtures can increase forage supply per unit water use relative to traditional pastures based on subterranean clover.


2021 ◽  
Vol 17 ◽  
Author(s):  
Robin Boom ◽  
Mike Dodd

A 4-year lime rate trial was established on a hill country sheep and cattle property near Te Akau to determine lime effects on pasture utilisation. Four rates of lime were applied (1.25 t/ha, 2.5 t/ha, 5 t/ha and 10 t/ha) to 2 m × 2 m plots, from which soil Al, Ca and pH, pasture grazing heights, dry matter production, pasture species composition, feed quality and brix levels were measured. Lime application reduced soil Al (14.6 to 1.1 mg/kg), and increased Ca and pH (5.0 to 6.2) over time in the highest application rate. Dry matter production responded to all rates of lime in each year, and by the fourth year it was 27% greater (1.25 t/ha treatment), 35% greater (2.5 t/ha treatment), 69% greater (5 t/ha treatment), and 97% greater (10 t/ha treatment) than in the un-limed plots. Ryegrass and subterranean clover content increased with lime rate, whereas chewings fescue and dicot weed content declined. There were no sustained differences in pasture grazing heights, feed quality or brix levels between the control and rates of lime. On this site, all rates of lime were economic to apply by truck or plane when the benefits were spread over 4 years, with the greatest cost-benefit from thelower rates of lime.


Author(s):  
M.J. Daly ◽  
R.M. Hunter ◽  
G.N. Green ◽  
L. Hunt

The performance of three different multi-species pastures (MSP), or mixed herb leys as they are also known, was compared with that of a standard ryegrass-white clover pasture (cvs Grasslands Super Nui-Grasslands Huia), over a 3-year period at two dryland sites. The MSP treatments had grass and legume species selected for compatibility and growth and aimed to provide a contrast in quality and production. The herb species, common to each of the MSP treatments, were chicory, plantain, sheep's burnet and yarrow. The dry matter production of the MSP treatments was significantly higher than that of the ryegrass-white clover pasture (P


1982 ◽  
Vol 33 (4) ◽  
pp. 705 ◽  
Author(s):  
BA Rowe

A simple relation between the annual wool production per animal (y) and the amount of pasture dry matter produced per animal (x) was derived and tested using the results from a grazing experiment in which the effects of superphosphate and stocking rate on wool and pasture dry matter production were measured from pastures which were continuously grazed by Merino wethers for 3 years. The linear relation, y = a + b/x, accounted for 63% of the variance in wool production per animal in the first year, 82 % in the second and 97 % in the third. Exclusion of an outlier from the first year results increased the variance accounted for to 85 %. This model is simpler and more precise than some others that have been published. It is also consistent with the curvilinear relation between production per animal (y) and pasture production per animal (x).


2004 ◽  
Vol 44 (2) ◽  
pp. 151 ◽  
Author(s):  
M. Bethune ◽  
Q. J. Wang

The dairy industry is a major user of water in northern Victoria and southern New South Wales. Water is typically applied to pasture using the border-check irrigation system. The border-check system is largely gravity driven and thus energy efficient. However, deep drainage can potentially be high because the system allows only limited control over the depth of water applied in each irrigation event. For this reason, heavy soils are regarded as the most suitable for border-check irrigation. This study quantified net deep drainage (deep drainage less capillary rise) under border-check irrigated pasture on a Goulburn clay loam soil. Additionally, the study investigated the extent to which irrigation frequency and watertable conditions influence water use, dry matter production and deep drainage. The water balance and dry matter production were monitored over 2.5 years in a lysimeter facility in northern Victoria. The Goulburn clay loam is representative of the heavier textured soils used for border-check irrigation of pasture in northern Victoria. The average measured net deep drainage was 4 mm/year. This indicates that relatively small levels of net deep drainage can be achieved under well-managed border-check irrigation on a Goulburn clay loam soil. Net deep drainage losses were greatest following winter, when rainfall exceeded pasture water use for an extended period. Increasing the interval between irrigation events resulted in reduced plant water use, infiltration of irrigation water, rainfall runoff and pasture production. However, increasing the interval did not impact on net deep drainage or water use efficiency. Depth of watertable had a relatively minor impact on the water balance.


Author(s):  
I.P.M. Mcqueen ◽  
J.A. Baars

Dry matter production data for pure lucerne, overdrilled lucerne and pasture are presented for 14 sites on pumice soils. On average, the annual dry matter yield of lucerne, harvested at early basal shoot movement, was 50% higher than from pasture, ranging from 128% higher on a drought-prone soil where the pasture was dominant browntop to 33% on a more moisture-retentive soil type where the pasture was ryegrass dominant. From April until late October there was little difference in total dry matter between lucerne and pasture, although pasture had a .more even distribution of usable production than lucerne 'managed for maximum yield. Attempts to fill the winter/spring gap in lucerne production through introducing grasses and cereals have met with variable success. It is suggested that, on the more moisture-retentive soils, pasture production could be improved through grazing management and the use of more drought-resistant cultivars. Such an approach may meet the feed demands of animals more closely than an increasing dependence on lucerne with its specific management requirements.


Sign in / Sign up

Export Citation Format

Share Document