scholarly journals The effects of lime on pasture composition and production in western Waikato hill country

2021 ◽  
Vol 17 ◽  
Author(s):  
Robin Boom ◽  
Mike Dodd

A 4-year lime rate trial was established on a hill country sheep and cattle property near Te Akau to determine lime effects on pasture utilisation. Four rates of lime were applied (1.25 t/ha, 2.5 t/ha, 5 t/ha and 10 t/ha) to 2 m × 2 m plots, from which soil Al, Ca and pH, pasture grazing heights, dry matter production, pasture species composition, feed quality and brix levels were measured. Lime application reduced soil Al (14.6 to 1.1 mg/kg), and increased Ca and pH (5.0 to 6.2) over time in the highest application rate. Dry matter production responded to all rates of lime in each year, and by the fourth year it was 27% greater (1.25 t/ha treatment), 35% greater (2.5 t/ha treatment), 69% greater (5 t/ha treatment), and 97% greater (10 t/ha treatment) than in the un-limed plots. Ryegrass and subterranean clover content increased with lime rate, whereas chewings fescue and dicot weed content declined. There were no sustained differences in pasture grazing heights, feed quality or brix levels between the control and rates of lime. On this site, all rates of lime were economic to apply by truck or plane when the benefits were spread over 4 years, with the greatest cost-benefit from thelower rates of lime.

2016 ◽  
Vol 67 (1) ◽  
pp. 69 ◽  
Author(s):  
M. R. McCaskill ◽  
M. C. Raeside ◽  
S. G. Clark ◽  
C. MacDonald ◽  
B. Clark ◽  
...  

Pastures sown to lucerne (Medicago sativa L.) with a perennial non-legume could increase feed supply relative to traditional pastures based on subterranean clover (Trifolium subterraneum L.). Such mixtures might also be preferable to pure lucerne pastures, which are prone to weed invasion. Yield and water-use efficiency (harvested dry matter per unit evapotranspiration) of mixtures with lucerne or subterranean clover were compared a field experiment established under rainfed conditions at Hamilton, Victoria. Soil moisture and dry matter production were measured over 2 years. Treatments included chicory (Cichorium intybus L.), cocksfoot (Dactylis glomerata L.) and tall fescue (Festuca arundinacea Shreb.) with either lucerne or subterranean clover; pure lucerne; and phalaris (Phalaris aquatica L.) and perennial ryegrass (Lolium perenne L.) with only subterranean clover. In the second year, dry matter production from lucerne mixtures exceeded that of equivalent mixtures with subterranean clover in spring, summer and winter. In spring, the lucerne component continued producing for longer than the clover component through its use of deeper stored soil water, and in summer, lucerne continued to grow slowly after the grass component had entered a drought-induced dormancy. In winter, the contribution from the lucerne component complemented, rather than competed with, that from the non-legume component. Water-use efficiencies during winter–spring ranged from 4 kg ha–1 mm–1 for chicory–clover to 27 kg ha–1 mm–1 for a fescue–lucerne mixture, and during summer–autumn from nil for cocksfoot–clover to 13 kg ha–1 mm–1 for a fescue–lucerne mixture. This study demonstrates that lucerne-based mixtures can increase forage supply per unit water use relative to traditional pastures based on subterranean clover.


1958 ◽  
Vol 9 (1) ◽  
pp. 53 ◽  
Author(s):  
JL Davidson ◽  
CM Donald

An experiment was conducted to study the growth of subterranean clover (Trifolium subterraneum L.) sown at different densities; the control swards were not defoliated while others were subjected to a single defoliation at various dates. During the final month the rate of dry matter production (tops only) increased to a maximum when the leaf area index (the ratio of the area of the leaves to the area of the ground surface — L.A.I.) was about 4-5, falling by about 30 per cent. as the L.A.I. increased to 8.7. The rate of leaf production was greatest at about L.A.I. 4-5, falling to zero at L.A.I. 8.7. Climatic conditions during the growing season influenced the relationship of L.A.I. to growth; as conditions became more favorable the values of the optimum LA.1. for growth and of the ceiling L.,4.1. progressively rose. Irrespective of the density, all swards tended towards a common ceiling L.A.I. and yield by the end of the season. The effect of defoliation depended on the L.A.I. at which defoliation occurred, on the value to which the L.A.I. was reduced, and on current climatic conditions. If swards near the ceiling L.A.I. were defoliated, total dry matter production was slightly increased and there was a great increase in leaf production. On the other hand, defoliation of swards from about the optimum L.A.I. to very low L.A.I. values led to a substantial reduction in both dry matter and leaf production. It is suggested that all these effects depend on the light relationships within the sward and their influence on the balance of photosynthesis and respiration. Pasture at the optimum L.A.I. will give greater production than swards of lower or higher L.A.I.; defoliation can give greatly increased leaf production, unless L.A.I. is reduced to very low values.


1974 ◽  
Vol 14 (69) ◽  
pp. 507 ◽  
Author(s):  
MH Campbell

In a series of experiments on unploughed hill country near Turondale, New South Wales, the effects of rate and type of herbicide on establishment, survival and persistence of surface-sown Medicago sativa, Trifolium subterraneum, Dactylis glomerata and Phalaris tuberosa were ascertained. Measurements of plant density and dry matter production of the pasture under grazing were made for up to seven years after sowing. Establishment was achieved under various rainfall conditions from eleven sowings. Herbicide application proved essential for the establishment and survival of the perennial species. Survival of M. sativa seedlings through their first summer was greater on the 2,2-DPA treatments than on paraquat treatments. The addition of simazine to paraquat increased survival of M. sativa over that on the paraquat-alone treatment. No similar effect was observed when simazine was added to 2,2-DPA. Establishment and survival were not influenced by rates of 2,2-DPA between 4.1 and 12.4 kg a.e. ha-1. Plant density in established swards was increased by up to 1200 per cent by strategic grazing applied after the improved species had completed seeding. Lucerne dominated other species and in the final year of measurement produced 87 per cent of a mean dry matter production of 9719 kg ha-1.


1981 ◽  
Vol 21 (112) ◽  
pp. 498 ◽  
Author(s):  
GD Reddy ◽  
AM Alston ◽  
KG Tiller

Seasonal changes in the concentrations of copper, molybdenum and sulfur in subterranean clover (Trifolium subterraneum), silver grass (Vulpia sp.), Wimmera ryegrass (Lolium rigidum), and capeweed (Arctotheca calendula) growing on lateritic podzolic soils were measured in glasshouse and field studies. The effects of varying soil temperature and water content on the concentrations of copper, molybdenum and sulfur in subterranean clover on a lateritic podzolic soil and a calcareous sand were also investigated. Similar seasonal patterns in plant composition were observed in the glasshouse and the field. The concentration of molybdenum tended to remain constant throughout the season, but that of copper and sulfur declined from autumn to spring; the decline was more rapid in the grasses than in subterranean clover and capeweed. Subterranean clover had higher concentrations of copper and sulfur but lower molybdenum than silver grass or Wimmera ryegrass. Capeweed contained more copper and molybdenum but less sulfur than subterranean clover. The concentrations of molybdenum and sulfur were similar in capeweed and the grasses. lncreasing soil temperature from 12 to 22�C increased the dry matter production and the concentrations of copper and molybdenum (but not sulfur) in subterranean clover on both soils. lncreasing soil water content slightly increased dry matter production and the concentration of molybdenum but had no effect on the concentration of copper and sulfur in subterranean clover. The results are discussed in relation to the health of grazing animals.


1985 ◽  
Vol 25 (1) ◽  
pp. 157 ◽  
Author(s):  
LJ Horsnell

Subterranean clover responds poorly to superphosphate application on some acid soils of the Southern Tablelands of New South Wales. A field experiment was undertaken, for two years, to examine the effects of incorporating large additional amounts of superphosphate or rock phosphate in the soil, with and without lime, on the growth of subterranean clover, lucerne and phalaris sown with recommended rates of lime superphosphate. Dry matter responses of subterranean clover and lucerne to superphosphate topdressing in the second year were also recorded. In the first year, subterranean clover growth was increased by the additional lime and by lime plus superphosphate. Lucerne growth was increased by additional lime. In the second year, the growth of subterranean clover was increased by the lime treatments and the superphosphate treatments applied in the previous year and by the deep incorporation into the soil of lime and superphosphate together. Subterranean clover growth also responded to the application of rock phosphate without lime. Lucerne dry matter production in the second year was increased by the lime, superphosphate and rock phosphate treatments applied in the first year. Lime application increased the yield responses of subterranean clover and lucerne to superphosphate topdressed in the second year. Lime application had no effect on the nitrogen content of the clover but increased that of lucerne. Lime application reduced the aluminium levels in the tops of all three species. The data suggest that the responsiveness of pastures to superphosphate on these soils is increased by the application of lime and rock phosphate and is related to low nitrogen fixation and high aluminium levels in the plant.


Soil Research ◽  
1992 ◽  
Vol 30 (1) ◽  
pp. 45 ◽  
Author(s):  
RF Brennan

The effectiveness of zinc fertilizer (Zn) on a wide range of Australian soils was examined using subterranean clover (Trifolium subterranean cv. Nungarin) as a test crop in a glasshouse experiment. The initial effectiveness (IE) of zinc fertilizer as measured by dry matter production (DMP), and zinc content (uptake) of subterranean clover (clover) was found to vary markedly among the soil types. No simple linear retationship between the initial effectiveness measured by either dry matter production or uptake and any one soil property was found. IE values were found to be related to the pH (1 : 5 soil :water) (pHw) and the level of DTPA soil extractable zinc measured in the unfertilized soil (Zno). IE based on Zn uptake by clover tops was also related to the organic carbon (OC) (%) content of the soils. The model for IE measured by DMP in a stepwise linear regression was IEDMP = 2.682 - 0.107 pH,-4.852 Zn, (n = 45; r2 = 0-86). IE based on Zn uptake by clover tops was: IEuptake = 10.842 - 0.882 pH, - 0.310 OC (%) - 1.349 Zn, (n = 54; R2 = 0.85). The IE of zinc fertilizer measured by DTPA soil extraction (IEDTPA-zn) was also found to vary markedly among soil types. The level of zinc extracted by DTPA after the addition of Zn fertilizer was found to be affected by clay (%), organic carbon (%) and calcium carbonate (CaCO3) (%) content of the range of Australian soils. This relationship could be described by: IEDTPA - Zn = 0.178 + 0.0.002 Clay (%) + 0.014 OC (%) + 0.018 CaCO3 (%) (N = 54, r2 = 0.84)


2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Marilize Bittencourtt Caldas ◽  
Jéssica Pereira Diniz ◽  
Andrisley Joaquim da Silva ◽  
Simone Pereira da Silva Baio ◽  
Monica Cristina Rezende Zuffo Borges ◽  
...  

Nitrogen is one of the most important nutrients for increasing the yield and quality of forages. This study aimed to evaluate the effect of the different forms of application, spread on the total area using urea fertilizer and foliar using liquid urea, aiming at evaluating the yield and qualitative traits of Panicum maximum cv. Mombaça, at different times of the year. The experimental design was completely randomized blocks in subdivided plots, with three blocks, four treatments, and three collections. The treatments were applied in March 2015 and consisted of the following treatments: 1-control; 2-urea; 3-liquid urea; 4-urea + liquid urea; 5-urea + micronutrients; 6-urea + N liquid; 7-urea + N liquid + micronutrients; 8-control. Samples were collected in May, October, and December 2015. Crude protein (CP) dry matter (DM), mineral matter (MM), and acid detergent fiber (ADF) were evaluated. Results revealed that nitrogen was determinant in improving the yield and forage quality. Treatments with urea spread on total area resulted in increased dry matter production. For the crude protein, the source and the application form are not decisive. Collection time with higher rainfall positively affected the dry matter production, crude protein, and ADF, while urea spread on total area showed the best cost-benefit due to the good results of yield and quality.


1993 ◽  
Vol 33 (6) ◽  
pp. 737 ◽  
Author(s):  
DW Stephenson ◽  
GJ Mitchell

Barley grass (Hordeum spp.) in a subterranean clover pasture was controlled with herbicides in the time between the 2-3 leaf stage and flowering. The effects on subsequent pasture production and composition were measured and the interaction between grazing and herbicides was also assessed. Early removal of barley grass reduced dry matter production in winter by an average of 41%. It also allowed an incursion of Indian hedge mustard (Sisymbrium orientale L.). which was suppressed by grazing but comprised an average of 23% ground cover in ungrazed pasture. Loss of total pasture production decreased as the date of herbicide application was delayed from June to September. Broadleaf species compensated for the early removal of barley grass, so that total dry matter production in spring in herbicide-treated areas was higher than in the unsprayed pasture. Fluazifop-p at 32, 53, and 106 g a.i/ha gave, respectively, 94, 91, and 94% reduction in barley grass seedhead density when applied at the 2-3 leaf stage, and 64, 88, and 98% reduction when applied at mid jointing. Application of this herbicide at 53 or 106 g a.i/ha for barley grass control can be delayed until late winter, thereby maintaining winter feed production but avoiding declining palatability and awned barley grass seeds.


Sign in / Sign up

Export Citation Format

Share Document