Seed and seedling studies of three Trifolium subterraneum var. brachycalycinum lines, in a predominantly summer rainfall environment

1995 ◽  
Vol 35 (8) ◽  
pp. 1101
Author(s):  
GM Lodge

Field experiments were conducted in a predominantly summer rainfall environment to investigate burr burial, seed production, seed characteristics, seedling emergence and survival, and the effects of time of sowing on 3 Trifolium subterraneum var. brachycalycinum lines (cv. Clare and 2 local lines). Each line produced more surface than buried burrs; surface burrs were 59% (range 56-62%) of the total number of burrs recovered and produced 59% of the total seed number. Numbers of seeds per burr were similar for surface and buried burrs, however, buried seeds were 0.97 mg heavier (P<0.05) than surface seeds. Storage for 5 months at 25/60�C decreased hardseed content of surface seed by 50% and buried seed by 70%. Surface and buried seeds stored at 25/25�C for 3 months prior to sowing in trays had a total emergence of <10%, compared with 70% emergence for seeds stored at 25/60�C before sowing. These emergence differences reflected their levels of hardseededness. Numbers of seeds recovered from the soil were not significantly different among lines, declining from about 4200 seeds/m2 after initial seed set to 150 seeds/m2 by the following winter, a 97% decrease. Seed production in the second year increased seed reserves to about 8730 seeds/m2. With no further seed production, levels had declined by 93% in June 1990 and by 99% in May 1991. These data confirm the importance of annual seed production for persistence. Total seedling emergence in summer-autumn accounted for only 10% of the estimated seed production in each year. Seedling survival in summer-autumn 1988-89 was 92.7%, more than double the survival in 1989-90. The effect of sowing time on flowering was always significant, with time to first flower being highest (196 days) for the earliest sowing in March (P<0.05), progressively decreasing (P<0.05) to 108 days for the latest sowing in July. In March, April and May sowings, inflorescence numbers on the first day of flowering were similar at about 120/m2, but increased markedly (P<0.05) for sowing in June or July. However, for the March and July sowings, number of inflorescences at the 9 November 1990 count, were lowest (P<0.05). May or June sowings had the highest number of burrs and seeds (P<0.05), indicating that these may be the best sowing times for maximum seed production in these Trifolium subterraneum var. brachycalycinum lines.


1974 ◽  
Vol 14 (71) ◽  
pp. 749 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The effects of four common fertilizers containing calcium on seed production in subterranean clover (Trifolium subterraneum) were measured at six locations over five years in a total of fifteen field experiments. Calcium as a sulphate, carbonate or phosphate salt was applied to subterranean clover pastures either at the start of the growing season (autumn) or at flowering (spring). Gypsum, plaster of Paris, or lime gave large increases in seed yield per unit area and also per unit weight of tops. Spring applications of superphosphate increased seed yields in only two out of four experiments. Gypsum applied in spring at 200-500 kg ha-1 was as effective as 2,000 kg ha-1 of lime applied in autumn. Applications of lime in spring were much less effective. Increased seed yields were due to increases in burr yield, seed number per burr, and mean weight per seed. They were usually accompanied by increases in calcium concentration in the seed. Responses in seed production to calcium applications were obtained in all three sub-species of Trifolium subterraneum. In two experiments, newly sown on a soil type on which subterranean clover regeneration and persistence is commonly very poor, applied calcium doubled or quadrupled seed set. In 13 experiments using soils on which subterranean clover had persisted as the major component of the pasture for several years, calcium in the year of application increased the total seed bank by 6 to 31 per cent, and the current seed set by a greater amount.



Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.



2003 ◽  
Vol 54 (6) ◽  
pp. 621 ◽  
Author(s):  
M. R. Gardener ◽  
R. D. B. Whalley ◽  
B. M. Sindel

This is the second in a series of papers investigating the ecology of Nassella neesiana (Trin. & Rupr.) Barkworth (Chilean needle grass) in pastures on the Northern Tablelands of New South Wales. The reasons for its success as a pasture weed are discussed. Nassella neesiana has a large and persistent soil seedbank. After 3 years without seed input, the seedbank declined from 4676 to 1323 seeds/m2. When an exponential decay curve was fitted to the data it was predicted that the seedbank would reach 10 seeds/m2 after 12.4 years. When seed production was large in 1996, 41.6% of seeds produced were incorporated into the seedbank, whereas in 1995 and 1997 the smaller seed production was only sufficient to maintain seedbank numbers. Furthermore, it is likely that the seedbank numbers were underestimated because they did not include basal cleistogenes. In a separate experiment, basal cleistogenes were found to contribute a further 20% to the seedbank.A small proportion of the viable seeds in a natural seedbank emerged from bare ground over 2 years. Seedling survival was high, with 78% of those germinating from bare ground surviving for at least 20 months. Several experiments were designed to investigate the mechanisms of this germination and survival. It appears that the seeds of N. neesiana have an after-ripening requirement of between 3 months and 1 year for maximum germination. Lemma removal from seeds stored for 8 months increased germination from 49 to 82%. The rate of germination and the total percentage of seeds germinating also increased with time of burial in the ground. Of seeds that had been buried for 2 years, 90% germinated after laboratory incubation compared with 48% of seeds stored in the laboratory as controls. Depth of seed burial appears to affect seedling emergence and survival. A smaller number of seedlings emerged from 0–10 mm and they had lower survival than those from seed buried at 10–20 mm.



1995 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
JW Morgan

The seasonal dynamics of the soil seed bank of Rutidosis leptorrhynchoides F.Muell. were studied by the seedling emergence technique. Seed longevity in soil was quantified in a seed burial and retrieval experiment. The importance of annual seed production to recruitment was also determined over a 2-year-period, as was the impact of conspecific neighbour density on seed production per inflorescence. Rutidosis leptorrhynchoides appears to form a transient seed bank with little capacity to store germinable seeds in the soil from year to year. No seedlings were observed in soil sampled after the autumn germination pulse and no viable seed was present in the soil within 16 weeks of burial. The rate of seed loss was similar when seed was buried under all intact grassland canopy and in 0.25m2 canopy gaps. It appears that most seeds simply rot in moist soil or are predated by soil invertebrates. Seedling recruitment was at least 15 times greater in plots where natural seed input occurred than where it was curtailed. Less than 10% of seed shed resulted in seedling emergence. It is suggested that recruitment in the large populations studied was limited by germination rather than by microsite availability for seedling survival. Population density had an impact on seed production with sparsely distributed individuals producing fewer seeds per inflorescence than plants from denser colonies, although there was much variation. Sparse plants produced significantly fewer seeds per inflorescence than hand crosspollinated heads suggesting reduced pollinator efficacy in these colonies relative to larger colonies where there was no such difference. Rutidosis leptorrhynchoides is dependent on the maintenance of the standing population for recruitment. Any factors that influence flowering and subsequent seed production will limit the ability of the species to regenerate. Over sufficient time, this could lead to the localised extinction of the species and may explain why R. leptorrhynchoides has failed to reappear in remnants where a suitable fire regime has been re-implemented after a period of management unfavourable to the survival, flowering and regeneration of this species.



1990 ◽  
Vol 41 (4) ◽  
pp. 669 ◽  
Author(s):  
Z Hochman ◽  
GJ Osborne ◽  
PA Taylor ◽  
B Cullis

In a field study on four sites, soil acidity, root rot (Phytophthora clandestina), and soil phosphorus were identified as causes of 'subterranean clover decline'. Liming increased herbage and seed production at four sites, with a tendency for lime to increase herbage yields in autumn (22%) and winter (15%) but not in spring. The presence of ryegrass with clover increased total herbage yields, and reduced clover seed production, but there was no interaction with liming. Losses caused by root rot associated with P. clandestina were quantified for the first time in New South Wales. Root rot reduced survival of seedlings as well as herbage production in autumn and/or winter at three of the four sites. In the presence of the disease, lime did not improve root health or seedling survival. On two sites with high aluminium saturation of exchangeable cations (> 17%) and high phosphorus sorption index values, subterranean clover growth responded to high levels of P fertilizer. On one site, where lime increased the soil pH to above 5.5, the P sorption index was temporarily increased, and this was associated with a temporary adverse effect on herbage yields. Some possible mechanisms underlying the seasonality of lime responses are proposed and the practical implications of our findings are discussed.



1979 ◽  
Vol 30 (4) ◽  
pp. 597 ◽  
Author(s):  
RCG Smith ◽  
MC Crespo

During the third year following establishment, the production, hard-seededness and dormancy of subterranean clover cv. Woogenellup when grown along and in association with white clover was studied in commercial pastures on the Northern Tablelands of New South Wales. The pasture containing only subterranean clover produced 757 mg seed dm-2, whereas in competition with white clover only 34 mg dm-2 was produced. A study was made of seed production by subterranean clover grown in competition with white clover. As the level of competition increased there was a marked decline in individual plant size, flowers per plant, seeds per burr and total seed production per plant, whereas no significant effects on seed dormancy and hard-seededness were apparent. A study of the seed and seedling population of the pure subterranean clover paddock revealed a recovery of 13% of the initial seed population as surviving plants and 32% as viable hard seeds at the beginning of winter. These observations suggest that competition from white clover could be a significant factor in some situations influencing the persistence of subterranean clover on the Northern Tablelands, and selection of cultivars with better ecological combining ability with white clover might be a worth-while objective.



2008 ◽  
Vol 88 (4) ◽  
pp. 799-809 ◽  
Author(s):  
K. F. Chang ◽  
S. F. Hwang ◽  
B. D. Gossen ◽  
G. D. Turnbull ◽  
H. Wang ◽  
...  

Rhizoctonia solani causes seedling blight and root rot in lentil, which reduces plant populations and the vigour and yield of surviving plants. Factors in the seedling environment, such as inoculum density, temperature, seeding depth, seeding date, and fungicidal seed treatment were studied to determine the degree to which they affect the impact of R. solani on lentil seedlings. Survival of lentil plants was evaluated after planting into soil artificially inoculated with various concentrations of a highly aggressive isolate of R. solani (AG-4). Emergence, seedling survival and shoot dry matter production decreased with increasing inoculum density, but these declines varied with temperature. Low soil temperatures delayed the emergence of lentil seedlings in non-inoculated soil, but in inoculated soils, emergence was inhibited with increasing temperatures. Depth of seeding did not affect seedling establishment, but root rot severity increased with depth of seeding in a growth cabinet trial. Root nodulation was reduced as root rot severity increased. In field experiments carried out over 3 station years, seeding date had a substantial effect on seedling emergence and yield of inoculated treatments, but the trends were not consistent between sites. In field assessments of fungicide efficacy, treatment of seed with thiabendazole plus carbathiin (Crown) and carbathiin plus thiram (Vitaflo 280) improved seedling establishment relative to the inoculated control. Key words: Lens culinaris, damping-off, root rot, seeding date, fungicide seed treatment depth of seeding, thiabendazole, carbathiin, thiram



2009 ◽  
Vol 60 (1) ◽  
pp. 32 ◽  
Author(s):  
K. N. Tozer ◽  
D. F. Chapman ◽  
P. E. Quigley ◽  
P. M. Dowling ◽  
R. D. Cousens ◽  
...  

Vulpia (Vulpia species C.C. Gmel.) are annual grass weeds that can reduce pasture quality and stock-carrying capacity of perennial pastures throughout southern Australia. To develop more effective strategies to control vulpia, an experiment was established in western Victoria (average annual rainfall 565 mm) in phalaris (Phalaris aquatica L.) pastures comparing the effects of control methods [comprising combinations of fertiliser addition (Fert), a single herbicide (simazine) application (Sim), and pasture rest from grazing (Rest)] on vulpia populations. A further herbicide treatment [paraquat-diquat (SpraySeed®)] was imposed on some of these treatments. Measurements included botanical composition, phalaris and vulpia tiller density, seed production, and number of residual seeds in the soil. Vulpia content remained unchanged in the Sim-Rest treatment but increased in all other management treatments over the duration of the 3 year study and especially where paraquat-diquat was applied, despite paraquat-diquat causing an initial reduction in vulpia content. Vulpia content was lowest in the Fert-Sim-Rest treatment. The Fert-Sim treatment and in some cases paraquat-diquat application reduced vulpia tiller production. Vulpia seed production and the residual seed population were not influenced by any of the management treatments, while the single paraquat-diquat application increased vulpia seed production 18 months after application. Phalaris content was enhanced by the Sim-Rest and Fert-Sim-Rest treatments and initially by paraquat-diquat. No treatment affected phalaris tiller production and basal cover. The subterranean clover (Trifolium subterraneum L.) content declined during the experiment, but to a lesser extent where paraquat-diquat was applied. Volunteer species content was initially suppressed in the year following paraquat-application, although populations recovered after this time. Of the two Vulpia spp. present (V. bromoides (L.) S.F. Gray and V. myuros (L.) C.C. Gmelin), V. bromoides was the most prevalent. Results show how a double herbicide application can increase vulpia fecundity and rate of re-infestation of herbicide-treated sites. Pasture rest shows some promise, but to a lesser extent than in the New South Wales tablelands, where summer rainfall may increase the growth of perennial species. In lower rainfall, summer dry areas, responses to pasture rest may be slower. Despite this, integrated management (which combines strategies such as pasture rest, herbicide application, and fertiliser application) increases the perennial content and reduces vulpia seed production, thus improving vulpia control.



1973 ◽  
Vol 13 (65) ◽  
pp. 681 ◽  
Author(s):  
BJ Quinlivan ◽  
AC Devitt ◽  
CM Francis

In two experiments in successive years on a sandy soil in Western Australia, seed production of subterranean clover (Trifolium subterraneum) when sown as a commercial crop was greatly influenced by time of sowing, phosphate rates and seeding rate. Early (April) sowing, high phosphate (up to 600 kg ha-1) and higher seeding rates (up to 24 kg ha-1) all increased seed set but the major effect was that of earliness of sowing. Time of sowing interacted with phosphate rates, the time of sowing differences being only fully expressed at high phosphate rates. Artificial nitrogen applied had a significant effect on seed yield in one of the trial years.



2005 ◽  
Vol 53 (3) ◽  
pp. 243 ◽  
Author(s):  
Trish A. Flores ◽  
Samantha A. Setterfield ◽  
Michael M. Douglas

Andropogon gayanus Kunth. (Gamba grass), a tall perennial grass from Africa, is invading savanna ecosystems in northern Australia. This study investigated A. gayanus recruitment to determine the habitats at risk of invasion and to provide recommendations for its management. A. gayanus is able to establish and spread into new areas because of its high seed production (averaging 70 000 seeds m–2) and ability to establish across a range of habitats: from open woodlands on relatively dry lateritic soils to the more closed forests on black soil of the floodplain margins. Seedling emergence occurred in the absence of soil cultivation, although soil cultivation did increase emergence in the wetter habitats (Melaleuca uplands and floodplain margins). Seedling survival was high in the savanna (~90%) but low in the wetter habitats owing to wet-season inundation. A seed longevity trial based on burying seed in the field and retrieving between 1 and 12 months after burial showed that less than 1% of seeds survived in the seedbank after 12 months. Effective control programs are needed immediately because of the vast area and range of habitats in northern Australia that could potentially be invaded by A. gayanus. Management that can limit site disturbance and seed production, and can incorporate follow-up control for one to two years, should be an important part of an A. gayanus control strategy.



Sign in / Sign up

Export Citation Format

Share Document