Coastal New Particle Formation: A Review of the Current State-Of-The-Art

2005 ◽  
Vol 2 (4) ◽  
pp. 245 ◽  
Author(s):  
Colin D. O'Dowd ◽  
Thorsten Hoffmann

Environmental Context.Atmospheric aerosols play an important role in determining the earth’s radiative budget, climate change and air quality levels. Much effort has been spent on quantifying the impact of aerosols on climate change; however, the largest gap in our knowledge relates to quantifying natural aerosol systems and the new particle formation process associated with these systems. The marine aerosol system is of particular interest due to the 70% ocean coverage of the earth’s surface. Coastal new particle formation events are though to be more frequent and of stronger intensity compared with open ocean events and thus have been studied in detail to identify possible processes leading to open ocean new particle production. Abstract.New particle formation via secondary gas-to-particle conversion processes over the oceans is one of the main mechanisms controlling the marine aerosol number population; however, despite extensive effort over the years, this phenomenon is still not well quantified. Coastal new particle formation events are more frequent than open ocean events and consequently have been studied in greater detail. This review article summarizes the recent studies into coastal new particle formation events and summarizes the linkage of these events to iodine emissions and ultimate particle formation via iodine oxide nucleation processes. The current state of knowledge may be summarized by concluding that, in general, coastal nucleation events are driven by biogenic emissions of iodine vapours that undergo rapid chemical reactions to produce condensable iodine oxides leading to nucleation and growth of new particles. The primary source of the condensable iodine vapours is thought to be molecular iodine (I2). The role of iodine oxides in open-ocean new particle production still remains an open question and is the most pressing next step to undertake.

2020 ◽  
Author(s):  
Janne Lampilahti ◽  
Hanna Elina Manninen ◽  
Katri Leino ◽  
Riikka Väänänen ◽  
Antti Manninen ◽  
...  

Abstract. Recent studies have shown the importance of new particle formation (NPF) to global cloud concensation nuclei (CCN) production, as well as to air pollution in megacities. In addition to the necessary presence of low-volatility vapors that can form the new aerosol particles, both numerical and observational studies have shown that the dynamics of the planetary boundary layer (BL) plays an important role in NPF. Evidence from field observations suggests that roll vortices might be favorable for inducing NPF in a convective BL. However, direct observations and estimates on the potential importance of this phenomenon to the production of new aerosol particles are lacking. Here we show that rolls frequently induce NPF bursts along the horizontal circulations, and that the small clusters and particles originating from these bursts grow in size similar to particles typically ascribed to regional-scale atmospheric NPF. We outline a method to identify roll-induced NPF from measurements and, based on the collected data, estimate the impact of roll vortices on the overall aerosol particle production due to NPF at a boreal forest site (83 ± 34 % and 26 ± 8 % overall enhancement in particle formation for 3-nm and 10-nm particles respectively). We conclude that the formation of roll vortices should be taken into account when estimating particle number budgets in the atmospheric BL.


2021 ◽  
Vol 21 (23) ◽  
pp. 17389-17431
Author(s):  
Ditte Taipale ◽  
Veli-Matti Kerminen ◽  
Mikael Ehn ◽  
Markku Kulmala ◽  
Ülo Niinemets

Abstract. Most trees emit volatile organic compounds (VOCs) continuously throughout their life, but the rate of emission and spectrum of emitted VOCs become substantially altered when the trees experience stress. Despite this, models to predict the emissions of VOCs do not account for perturbations caused by biotic plant stress. Considering that such stresses have generally been forecast to increase in both frequency and severity in the future climate, the neglect of stress-induced plant emissions in models might be one of the key obstacles for realistic climate change predictions, since changes in VOC concentrations are known to greatly influence atmospheric aerosol processes. Thus, we constructed a model to study the impact of biotic plant stresses on new particle formation and growth throughout a full growing season. We simulated the influence on aerosol processes caused by herbivory by the European gypsy moth (Lymantria dispar) and autumnal moth (Epirrita autumnata) feeding on pedunculate oak (Quercus robur) and mountain birch (Betula pubescens var. pumila), respectively, and also fungal infections of pedunculate oak and balsam poplar (Populus balsamifera var. suaveolens) by oak powdery mildew (Erysiphe alphitoides) and poplar rust (Melampsora larici-populina), respectively. Our modelling results indicate that all the investigated plant stresses are capable of substantially perturbing both the number and size of aerosol particles in atmospherically relevant conditions, with increases in the amount of newly formed particles by up to about an order of magnitude and additional daily growth of up to almost 50 nm. We also showed that it can be more important to account for biotic plant stresses in models for local and regional predictions of new particle formation and growth during the time of infestation or infection than significant variations in, e.g. leaf area index and temperature and light conditions, which are currently the main parameters controlling predictions of VOC emissions. Our study thus demonstrates that biotic plant stress can be highly atmospherically relevant. To validate our findings, field measurements are urgently needed to quantify the role of stress emissions in atmospheric aerosol processes and for making integration of biotic plant stress emission responses into numerical models for prediction of atmospheric chemistry and physics, including climate change projection models, possible.


2020 ◽  
Vol 20 (20) ◽  
pp. 11841-11854
Author(s):  
Janne Lampilahti ◽  
Hanna Elina Manninen ◽  
Katri Leino ◽  
Riikka Väänänen ◽  
Antti Manninen ◽  
...  

Abstract. Recent studies have shown the importance of new particle formation (NPF) to global cloud condensation nuclei (CCN) production, as well as to air pollution in megacities. In addition to the necessary presence of low-volatility vapors that can form new aerosol particles, both numerical and observational studies have shown that the dynamics of the planetary boundary layer (BL) plays an important role in NPF. Evidence from field observations suggests that roll vortices might be favorable for inducing NPF in a convective BL. However, direct observations and estimates of the potential importance of this phenomenon to the production of new aerosol particles are lacking. Here we show that rolls frequently induce NPF bursts along the horizontal circulations and that the small clusters and particles originating from these localized bursts grow in size similar to particles typically ascribed to atmospheric NPF that occur almost homogeneously at a regional scale. We outline a method to identify roll-induced NPF from measurements and, based on the collected data, estimate the impact of roll vortices on the overall aerosol particle production due to NPF at a boreal forest site (83 % ± 34 % and 26 % ± 8 % overall enhancement in particle formation for 3 and 10 nm particles, respectively). We conclude that the formation of roll vortices should be taken into account when estimating particle number budgets in the atmospheric BL.


2021 ◽  
Author(s):  
James Brean ◽  
Manuel Dall’Osto ◽  
Rafel Simó ◽  
Zongbo Shi ◽  
David C. S. Beddows ◽  
...  

2017 ◽  
Vol 17 (2) ◽  
pp. 1529-1541 ◽  
Author(s):  
Clémence Rose ◽  
Karine Sellegri ◽  
Isabel Moreno ◽  
Fernando Velarde ◽  
Michel Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ∼ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3347
Author(s):  
Zwoździak Jerzy ◽  
Szałata Łukasz ◽  
Zwoździak Anna ◽  
Kwiecińska Kornelia ◽  
Byelyayev Maksym

The upcoming trends related to climate change are increasing the level of interest of social groups in solutions for the implementation and the realization of activities that will ensure the change of these trends and can reduce the impact on the environment, including the health of the community exposed to these impacts. The implementation of solutions aimed at improving the quality of the environment requires taking into account not only the environmental aspects but also the economic aspect. Taking into account the analysis of solutions changing the current state of climate change, the article focuses on the analysis of the potential economic effect caused by the implementation of nature-based solutions (NBSs) in terms of reducing the operating costs related to water retention for local social groups. The analysis is based on a case study, one of the research projects studying nature-based solutions, created as part of the Grow Green project (H2020) in Wrocław in 2017–2022. The results of the analysis are an observed potential positive change in economic effects, i.e., approximately 85.90% of the operating costs related to water retention have been reduced for local social groups by NBSs.


2016 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
I. Moreno ◽  
F. Velarde ◽  
M. Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contribute significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ~ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between January 1 and December 31 2012, we found that 61% of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF events relative to the transport of pre-existing particles to the site. The averaged production of 50 nm particles during those events was 5072 cm−3, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 56 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud related radiative processes.


2010 ◽  
Vol 10 (14) ◽  
pp. 6721-6735 ◽  
Author(s):  
S. Crumeyrolle ◽  
H. E. Manninen ◽  
K. Sellegri ◽  
G. Roberts ◽  
L. Gomes ◽  
...  

Abstract. Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3–10 nm diameter, denoted N3-10 hereafter) concentrations. The results show that particle production occurred under the influence of different air mass origins, at different day times and over the North Sea as well as over the continent. The number concentration of freshly nucleated particles (N3-10) varied between 5000 and 100 000 cm−3 within the boundary layer (BL). Furthermore the vertical extension for all nucleation events observed on the ATR-42 never exceeded the upper limit of the BL. The horizontal extent of N3-10 could not be delimited due to inflexible flight plans which could not be modified to accommodate real-time results. However, the NPF events were observed over geographically large areas; typically the horizontal extension was about 100 km and larger.


2006 ◽  
Vol 6 (2) ◽  
pp. 505-523 ◽  
Author(s):  
S. Pechtl ◽  
E. R. Lovejoy ◽  
J. B. Burkholder ◽  
R. von Glasow

Abstract. We studied the possible role of iodine oxides in atmospheric new particle formation with the one-dimensional marine boundary layer model MISTRA, which includes chemistry in the gas and aerosol phase as well as aerosol microphysics. The chemical reaction set focuses on halogen (Cl-Br-I) chemistry. We included a two-step nucleation parameterization, where in the first step, the "real" nucleation process is parameterized, i.e., the formation of cluster-sized nuclei via homogeneous condensation of gases. We considered both ternary sulfuric acid-ammonia-water nucleation and homomolecular homogeneous OIO nucleation. For the latter, we derived a parameterization based on combined laboratory-model studies. The second step of the nucleation parameterization treats the "apparent" nucleation rate, i.e., the growth of clusters into the model's lowest size bin by condensable vapors such as OIO. We compared different scenarios for a clean marine versus a polluted continental background atmosphere. In every scenario, we assumed the air to move, independent of its origin, first over a coastal region (where it is exposed to surface fluxes of different reactive iodine precursors) and later over the open ocean. According to these sensitivity studies, in the clean marine background atmosphere OIO can be responsible for both homogeneous nuclei formation and the subsequent growth of the clusters to detectable sizes. In contrast to this, in the continental case with its higher levels of pollutants, gas phase OIO mixing ratios, and hence related nucleation rates, are significantly lower. Compared to ternary H2SO4-NH3-H2O nucleation, homogeneous OIO nucleation can be neglected for new particle formation in this case, but OIO can contribute to early particle growth, i.e., to apparent nucleation rates. In general, we found OIO to be more important for the growth of newly formed particles than for the formation of new nuclei. According to our studies, observations of particle "bursts" can only be explained by hot spot-like, not by homogeneously distributed emissions.


2014 ◽  
Vol 14 (19) ◽  
pp. 10823-10843 ◽  
Author(s):  
B. Bonn ◽  
E. Bourtsoukidis ◽  
T. S. Sun ◽  
H. Bingemer ◽  
L. Rondo ◽  
...  

Abstract. It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.


Sign in / Sign up

Export Citation Format

Share Document