Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research

2003 ◽  
Vol 30 (2) ◽  
pp. 171 ◽  
Author(s):  
Roger M. Gifford

Plant respiratory regulation is too complex for a mechanistic representation in current terrestrial productivity models for carbon accounting and global change research. Accordingly, simpler approaches that attempt to capture the essence of respiration are commonly adopted. Several approaches have been used in the literature: respiration may be embedded implicitly in growth algorithms; assumed values for specific respiration rates may be adopted; respiration may be calculated in terms of growth and maintenance components; conservatism in the ratio of respiration to photosynthesis (R : P) may be assumed; or a more complex process or residual approach may be adopted. Review of this literature suggests that the assumption of conservative R : P ratio is an effective and practicable approach in the context of C-cycle modelling for global change research and documentation, requiring minimal ecosystem-specific data on respiration.Some long-standing controversies in respiration are now becoming resolved. The apparently wasteful process of cyanide-resistant respiration by the alternative oxidase may not be wasteful, as it is thought to be involved in protecting the plant from 'reactive oxygen species'. It is now clear that short-term respiratory response coefficients of plants (e.g. the Q10) do not predict their long-term temperature response. A new experimental approach suggests that leaf respiration is not suppressed by light as previously thought. Careful experiments, taking account of several proposed measurement artefacts, indicate that plant respiration is not suppressed by elevated CO2 concentration in a short-term reversible way.

Author(s):  
Nathan G Walworth ◽  
Michael D Lee ◽  
Egor Dolzhenko ◽  
Fei-Xue Fu ◽  
Andrew D Smith ◽  
...  

Abstract A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.


2021 ◽  
Vol 11 ◽  
Author(s):  
Man Xu ◽  
Lìyǐn L. Liáng ◽  
Miko U. F. Kirschbaum ◽  
Shuyi Fang ◽  
Yina Yu

Plant leaf respiration is one of the critical components of the carbon cycle in terrestrial ecosystems. To predict changes of carbon emissions from leaves to the atmosphere under a warming climate, it is, therefore, important to understand the thermodynamics of the temperature response of leaf respiration. In this study, we measured the short-term temperature response of leaf respiration from five different urban tree species in a subtropical region of southern China. We applied two models, including an empirical model (the Kavanau model) and a mechanistic model (Macromolecular Rate Theory, MMRT), to investigate the thermodynamic properties in different plant species. Both models are equivalent in fitting measurements of the temperature response of leaf respiration with no significant difference (p = 0.67) in model efficiency, while MMRT provides an easy way to determine the thermodynamic properties, i.e., enthalpy, entropy, and Gibbs free energy of activation, for plant respiration. We found a conserved temperature response in the five studied plant species, showing no difference in thermodynamic properties and the relative temperature sensitivity for different species at low temperatures (<42°C). However, divergent temperature response among species happened at high temperatures over 42°C, showing more than two-fold differences in relative respiration rate compared to that below 42°C, although the causes of the divergent temperature response remain unclear. Notably, the convergent temperature response at low temperatures could provide useful information for land surface models to improve predictions of climate change effects on plant respiration.


1992 ◽  
Author(s):  
DAVID SKOLE ◽  
WALTER CHOMENTOWSKI ◽  
BINBIN DING ◽  
BERRIEN MOORE, III

1997 ◽  
Author(s):  
Richard Birdsey ◽  
Robert Mickler ◽  
David Sandberg ◽  
Richard Tinus ◽  
John Zerbe ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 314
Author(s):  
Andrew Revill ◽  
Vasileios Myrgiotis ◽  
Anna Florence ◽  
Stephen Hoad ◽  
Robert Rees ◽  
...  

Climate, nitrogen (N) and leaf area index (LAI) are key determinants of crop yield. N additions can enhance yield but must be managed efficiently to reduce pollution. Complex process models estimate N status by simulating soil-crop N interactions, but such models require extensive inputs that are seldom available. Through model-data fusion (MDF), we combine climate and LAI time-series with an intermediate-complexity model to infer leaf N and yield. The DALEC-Crop model was calibrated for wheat leaf N and yields across field experiments covering N applications ranging from 0 to 200 kg N ha−1 in Scotland, UK. Requiring daily meteorological inputs, this model simulates crop C cycle responses to LAI, N and climate. The model, which includes a leaf N-dilution function, was calibrated across N treatments based on LAI observations, and tested at validation plots. We showed that a single parameterization varying only in leaf N could simulate LAI development and yield across all treatments—the mean normalized root-mean-square-error (NRMSE) for yield was 10%. Leaf N was accurately retrieved by the model (NRMSE = 6%). Yield could also be reasonably estimated (NRMSE = 14%) if LAI data are available for assimilation during periods of typical N application (April and May). Our MDF approach generated robust leaf N content estimates and timely yield predictions that could complement existing agricultural technologies. Moreover, EO-derived LAI products at high spatial and temporal resolutions provides a means to apply our approach regionally. Testing yield predictions from this approach over agricultural fields is a critical next step to determine broader utility.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Kaisa Matschoss ◽  
Maria Pietilä ◽  
Mikko Rask ◽  
Tanja Suni

Eos ◽  
1992 ◽  
Vol 73 (11) ◽  
pp. 116-116
Author(s):  
G. Weller ◽  
M. Lange

Sign in / Sign up

Export Citation Format

Share Document