VvMADS9, a class B MADS-box gene involved in grapevine flowering, shows different expression patterns in mutants with abnormal petal and stamen structures

2006 ◽  
Vol 33 (9) ◽  
pp. 877 ◽  
Author(s):  
Lekha Sreekantan ◽  
Laurent Torregrosa ◽  
Lucie Fernandez ◽  
Mark R. Thomas

VvMADS9, a MADS-box gene, from grapevine (Vitis vinifera L.) cultivar Cabernet Sauvignon has been isolated and its expression pattern studied in wild type Cabernet Sauvignon, Mourvèdre, and Bouchalès cultivars and mutants of the latter two genotypes showing abnormal petal / stamen structures. Sequence analysis showed that VvMADS9 was highly similar to PISTILLATA (PI), the class B gene that specifies the identity of petals and stamens in Arabidopsis. The temporal expression pattern of VvMADS9 studied through real-time PCR revealed that its expression was specific to flower development. The low levels of expression in the Mourvèdre mutant and the skewed expression pattern in the Bouchalès mutant as compared to their wild type counterparts suggested that VvMADS9 is involved in normal formation of petals and stamens. Through in situ hybridisation, expression of VvMADS9 was detected in stamens and weak expression on the basal regions of the petals. This suggested a possible role for VvMADS9 in specifying stamen and petal organ identity in grapevine similar to Class B genes in other species. All evidence thus pointed to the conclusion that VvMADS9 is an orthologue of PISTILLATA in grapevine.

Planta ◽  
2004 ◽  
Vol 218 (5) ◽  
pp. 712-720 ◽  
Author(s):  
Shigeo Takumi ◽  
Koji Murai ◽  
Eriko Hama ◽  
Yasunari Ogihara

2007 ◽  
Vol 7 ◽  
pp. 268-279 ◽  
Author(s):  
Akira Kanno ◽  
Mutsumi Nakada ◽  
Yusuke Akita ◽  
Masayo Hirai

The discovery of the MADS-box genes and the study of model plants such as Arabidopsis thaliana and Antirrhinum majus have greatly improved our understanding of the molecular mechanisms driving the diversity in floral development. The class B genes, which belong to the MADS-box gene family, are important regulators of the development of petals and stamens in flowering plants. Many nongrass monocot flowers have two whorls of petaloid organs, which are called tepals. To explain this floral morphology, the modified ABC model was proposed. This model was exemplified by the tulip, in which expansion and restriction of class B gene expression is linked to the transition of floral morphologies in whorl 1. The expression patterns of class B genes from many monocot species nicely fit this model; however, those from some species, such as asparagus, do not. In this review, we summarize the relationship between class B gene expression and floral morphology in nongrass monocots, such as Liliales (Liliaceae) and Asparagales species, and discuss the applicability of the modified ABC model to monocot flowers.


2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1767
Author(s):  
Annemarie Heiduk ◽  
Dewi Pramanik ◽  
Marlies Spaans ◽  
Loes Gast ◽  
Nemi Dorst ◽  
...  

Deceptive Ceropegia pitfall flowers are an outstanding example of synorganized morphological complexity. Floral organs functionally synergise to trap fly-pollinators inside the fused corolla. Successful pollination requires precise positioning of flies headfirst into cavities at the gynostegium. These cavities are formed by the corona, a specialized organ of corolline and/or staminal origin. The interplay of floral organs to achieve pollination is well studied but their evolutionary origin is still unclear. We aimed to obtain more insight in the homology of the corona and therefore investigated floral anatomy, ontogeny, vascularization, and differential MADS-box gene expression in Ceropegia sandersonii using X-ray microtomography, Light and Scanning Electronic Microscopy, and RT-PCR. During 10 defined developmental phases, the corona appears in phase 7 at the base of the stamens and was not found to be vascularized. A floral reference transcriptome was generated and 14 MADS-box gene homologs, representing all major MADS-box gene classes, were identified. B- and C-class gene expression was found in mature coronas. Our results indicate staminal origin of the corona, and we propose a first ABCDE-model for floral organ identity in Ceropegia to lay the foundation for a better understanding of the molecular background of pitfall flower evolution in Apocynaceae.


2017 ◽  
Vol 8 ◽  
Author(s):  
Yingjun Chi ◽  
Tingting Wang ◽  
Guangli Xu ◽  
Hui Yang ◽  
Xuanrui Zeng ◽  
...  

2000 ◽  
Vol 113 (10) ◽  
pp. 1793-1802 ◽  
Author(s):  
S. Orsulic ◽  
R. Kemler

E-cadherin is the main cell adhesion molecule of early embryonic and adult epithelial cells. Downregulation of E-cadherin is associated with epithelial-mesenchymal transition during embryonic mesoderm formation and tumor progression. To identify genes whose expression is affected by the loss of E-cadherin, we compared mRNA expression patterns between wild-type and E-cadherin null mutant embryonic stem (ES) cells. We found that expression of several Eph receptors and ephrins is dependent on E-cadherin. Rescue of E-cadherin null ES cells with E-cadherin cDNA restores the wild-type expression pattern of Eph family members. Rescue of E-cadherin null ES cells with N-cadherin cDNA does not restore the wild-type expression pattern, indicating that the regulation of differential expression of Eph family members is specific to E-cadherin. Constitutive ectopic expression of E-cadherin in non-epithelial NIH3T3 cells results in the production of the EphA2 receptor. In epithelial cells, E-cadherin is required for EphA2 receptor localization at cell-cell contacts; in the absence of functional E-cadherin, EphA2 localizes to the perinuclear region. Our results indicate that E-cadherin may be directly or indirectly required for the membrane localization of Eph receptors and their membrane-bound ligands.


2006 ◽  
Vol 84 (5) ◽  
pp. 767-776 ◽  
Author(s):  
Teresa Martin ◽  
Ming Hu ◽  
Hélène Labbé ◽  
Sylvia McHugh ◽  
Antonet Svircev ◽  
...  

MADS-box transcription factors are known to play a central role in floral organ identity and floral meristem determinacy in many gymnosperms and angiosperms. Studies of this nature are limited in fruit tree species despite the economic importance of this group. A peach ( Prunus persica (L.) Batsch) gene, PpAG1, was isolated and shown to be homologous to the Arabidopsis thaliana (L.) Heynh. MADS-box gene AGAMOUS (AG). It is a single gene in peach and codes for a type II or MIKC-type MADS-box protein. The features of the deduced protein sequence indicate that it is similar to other AG homologs from woody plant species. The spatial and developmental patterns of expression parallel those of AG and homologs from other angiosperms with similar floral structures but with some minor differences. In the floral meristem, where AG is responsible for conversion of the vegetative meristem into the floral meristem, the differentiation of the whorls that generate the carpels and stamens coincides with the tissue-specific expression of PpAG1. It continues to be expressed in the ovules, developing fruit and seeds that subsequently develop from the carpels. Constitutive overexpression of PpAG1 in Arabidopsis, using the 35S promoter, caused the homeotic conversion of sepals to carpelloid tissues and altered petal development. This is consistent with C-function genes according to the ABC model of flower development. The data support the conclusion that PpAG1 is the peach homolog of Arabidopsis AG.


Sign in / Sign up

Export Citation Format

Share Document