Strategies to increase the yield and yield stability of crops under drought – are we making progress?

2014 ◽  
Vol 41 (11) ◽  
pp. 1199 ◽  
Author(s):  
Neil C. Turner ◽  
Abraham Blum ◽  
Mehmet Cakir ◽  
Pasquale Steduto ◽  
Roberto Tuberosa ◽  
...  

The objective of the InterDrought conferences is to be a platform for debating key issues that are relevant for increasing the yield and yield stability of crops under drought via integrated approaches. InterDrought-IV, held in Perth, Australia, in September 2013, followed previous InterDrought conferences in bringing together researchers in agronomy, soil science, modelling, physiology, biochemistry, molecular biology, genetics and plant breeding. Key themes were (i) maximising water productivity; (ii) maximising dryland crop production; (iii) adaptation to water-limited environments; (iv) plant productivity under drought through effective water capture, improved transpiration efficiency, and growth and yield; and (v) breeding for water-limited environments through variety development, and trait-based genomics-assisted and transgenic approaches. This paper highlights some key issues and presents recommendations for future action. Improved agronomic interventions were recognised as being important contributors to improved dryland crop yields in water-limited environments, and new methods for exploring root architecture and water capture were highlighted. The increase in crop yields under drought through breeding and selection, the development of high-throughput phenotyping facilities for field-grown and pot-grown plants, and advances in understanding the molecular basis of plant responses and resistance to drought stress were recognised. Managed environment phenotyping facilities, a range of field environments, modelling, and genomic molecular tools are being used to select and release drought-resistant cultivars of all major crops. Delegates discussed how individuals and small teams can contribute to progress, and concluded that interdisciplinary research, linkages to international agricultural research centres, public–private partnerships and continuation of the InterDrought conferences will be instrumental for progress.

2013 ◽  
Vol 44 ◽  
pp. 95-102
Author(s):  
Saad Ahmad Alghariani

AbstractThe looming water crisis in Libya necessitates taking immediate action to reduce the agricultural water demand that consumes more than 80% of the water supplies. The available information on water use efficiency and crop water productivity reveals that this proportion can be effectively reduced while maintaining the same, if not more, total agricultural production at the national level. Crop water productivity, which is depressingly low, can be doubled through implementing several measures including relocating all major agricultural crops among different hydroclimatic zones and growth seasons; crop selection based on comparative production advantages; realisation of the maximum genetically determined crop yields; and several other measures of demand water management. There is an urgent need to establish the necessary institutional arrangements that can effectively formulate and implement these measures as guided by agricultural research and extension services incorporating all beneficiaries and stakeholders in the process.


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


Author(s):  
Shinta Lestari Santosa ◽  
I Nyoman Rai ◽  
Wayan Diara

Vegetable cultivation is livelihoods for side Lake Batur communities, Kintamani, Bangli. Hilly natural conditions with a soil texture influenced by the eruption of Mount Batur, 900 m above sea level, and 900-3500 mm high rainfall, causing this region is very suitable for the cultivation of various vegetables, including shallot. One effort to meet the high demand for shallots is that efforts are made to improve cultivation techniques, including fertilizing to improve yields. In modern agriculture, the use of fertilizer is absolutely essential to trigger the level of crop production. The aims is to analyze the combination effect of using of inorganic fertilizer (ZA fertilizer) and organic fertilizer (compost fertilizer) on shallot vegetable cultivation systems on the content of pollutants, N nutrients and onion crop yields on the shores of Lake Batur, Kintamani District, Bangli Regency. The study using RBD with two factors where factor I: provision of organic fertilizer is leaf compost made aerobically (O), consisted of 3 levels, namely: O0 = 0*, O1 = 5* and O2 = 10*and factor II: the application of inorganic fertilizer namely ZA (S) fertilizer, consisted of 3 levels, namely: S0 = 0**, S1 = 50** and S2  = 100**, each repeated 3 times. The parameters observed were the growth and yield of shallots as well as the content of Pb, Zn, Cu and N nutrients in the soil. The nutrient content (N) in the soil, when using chemical fertilizer ZA and compost organic is not significantly different, as well as the results of onion plants, while the content of Pb, Zn and Cu on the use of chemical fertilizer ZA and organic compost, very real different. The highest soil Pb content in S2O1 treatment is 30.07***, the highest soil Zn content in the S2O1 treatment was 28.24***, and the highest soil Cu content in the S1O2 treatment is 17.22***. *= tons/ha **= kg/ha ***= mg/kg Keywords: compost; contents Pb; Zn; Cu of soil; shallot; ZA.


2014 ◽  
Vol 6 (2) ◽  
pp. 362-365
Author(s):  
V. Sanjivkumar ◽  
P. Malarvizhi

In most soils, soil and fertilizer Phosphorus (P) are easily bound by either soil organic matter or chemicals and thus are unavailable to plants unless hydrolyzed to release inorganic phosphate. Therefore, the development of P-efficient rice varieties that can grow and yield better with low P supply is a key to improve crop production. P efficient plants play a major role in increasing crop yields due to shortage of inorganic P fertilizer resources, limited land and water resources and increasing environmental concerns. Based on the P uptake efficiency, four rice genotypes viz.,TNRH 180, CB08504, CB06732 and ADT 47 were selected from the field experiment and used in pot culture experiment with three levels of P using radio isotope technique to quantify the P acquisition efficiency (PAE) and P use efficiency (PUE) and also to determine the native P supplying power of the soils using 32P in low P soils. Growth and yield parameters, grain and straw yield and major nutrients uptake of rice genotypes were increased with enhanced level of phosphorus application. Among the four genotypes, TNRH 180 recorded the highest grain yield and uptake. Increasing the P application rate from 25 to 50 kg P2O5 ha-1 increased the %Pdff in grain and straw for all the genotypes. The mean per cent phosphorus utilization (PPU) ranged between 18.74 and 23.72. The PPU of the genotypes followed the order TNRH 180 (23.72 %) > CB08504 (23.36 %) > CB06732 (20.54%) > ADT 47 (18.74%). The PPU values were higher at lower level of P application (25 kg P2O5 ha-1) for the genotypes TNRH 180, CB08504 and CB06732. From this study showed that rice genotypes have the ability to utilize the both available and unavailable form of phosphorus by secreting some organic acids in the root portion to solubilize. Hence rice genotypes indicated above have the ability to increase phosphorus utilization efficiency.


2002 ◽  
Vol 42 (6) ◽  
pp. 887 ◽  
Author(s):  
P. S. Carberry ◽  
H. Meinke ◽  
P. L. Poulton ◽  
J. N. G. Hargreaves ◽  
A. J. Snell ◽  
...  

Recent reports in Australia and elsewhere have attributed enhanced crop yields to the presence of tree windbreaks on farms. One hypothesis for this observation is that, by reducing wind speed, windbreaks influence crop water and energy balances resulting in lower evaporative demand and increased yield. This paper is the second in a series aimed at developing and using crop and micrometeorological modelling capabilities to explore this hypothesis. Specifically, the objectives of this paper are to assist the interpretation of recent field experimentation on windbreak impacts and to quantify the potential benefits and the likelihood of windbreak effects on crop production through an economic analysis of crop yields predicted for the historical climate record at selected sites in Australia. The APSIM systems model was specified to simulate crop growth under the environmental changes induced by windbreaks and subsequently used to simulate the potential benefits on crop production at 2 actual windbreak sites and 17 hypothetical sites around Australia. With the actual windbreak sites, APSIM closely simulated measured crop growth and yield in open-field conditions. However, neither site demonstrated measurable windbreak impacts and APSIM simulations confirmed that such effects would have been either non-existent or masked by experimental variability in the years under study. For each year of the long-term climate record at 17 sites, APSIM simulated yields of relevant crops for transects behind hypothetical windbreaks that provided protection against all wind. When wind protection from all directions is assumed, average simulated yield increases at 5 H (height of windbreak) ranged from 0.2% for maize at Atherton to 24.6% for wheat grown at Dalby, resulting in gross margin changes of �$14.79/ha.crop and $24.13/ha.crop, respectively, for a 10 m high windbreak and 100 ha paddock and assuming a 20% yield loss due to tree competition in the 1.0�3.5 H section. Averaged across all sites and crops, the simulations predicted a yield advantage of 8.6% at 5 H for protection from wind in any direction, resulting in an average gross margin loss of �$0.60/ha.crop. At the 8 sites with available data for wind direction, and assuming protection only from wind originating within a 90� arc perpendicular to a hypothetical windbreak which was optimally orientated at each site, average simulated yield increases at 5 H ranged from 1.0% for wheat at Orange to 8.6% for wheat grown at Geraldton. For a 10 m high windbreak, 100 ha paddock and an assumed 20% yield loss in the 1.0�3.5 H section, the average result across all sites and crops was a 4.7% yield advantage at 5 H and an average gross margin loss of �$2.49/ha.crop. In conclusion, APSIM simulation and economic analyses indicated that yield benefits from microclimate changes can at least partly offset the opportunity costs of positioning tree windbreaks on farms.


Author(s):  
Lukman .

Arenga palm is a liquid obtained from palm plant stem [Arenga pinnata (Wurmb). Merr)] this liquid is used as an ingredient for brown sugar or alcoholic beverages, this liquid is then mixed with some organic ingredients through fermentation method. The result of laboratory analysis shows that the fermentation contained N, P, K, and IAA and GA3 hormones that were used as experimental fertilizer (Liquid Organic fertilizer arenga palm). This research aims to determine the effectiveness of the dosage of liquid organic fertilizer to the growth and yield of rice field plants. This research used a randomized block design consisting of 3 (three) replications and 10 doses so that there were 30 experimental treatments. The study was carried out at the Agricultural Research Institute of Sidondo Palu in Central Sulawesi in March to June 2017. The analysis used was the analysis of single factor variance with the Honest Significant Difference test (BNJ). The results of the analysis shows that the dose of arenga palm 25.75 L.ha-1 for plant growth aged 15 days after planting (HST), 28 HST and 43 HST affects significantly (P <0.001) to an average plant height of 49.3 cm, 6.51 cm and 86 cm, and the number of productive tillers is 15.23 stems. Cluster-1. Likewise, the results of crop production shows that the use of a dose of 25.75 L. ha-1 is significantly different (P <0.001 harvested dry rice yield (GKP) 7.99 tons. ha-1.


2011 ◽  
Vol 15 (2) ◽  
pp. 505-518 ◽  
Author(s):  
S. Quiroga ◽  
Z. Fernández-Haddad ◽  
A. Iglesias

Abstract. The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.


Author(s):  
Arjun Lal Prajapat ◽  
Rani Saxena ◽  
R. R. Choudhary ◽  
Manoj Kumhar

Background: India has the largest area under wheat cultivation but variability in climate is one of the major environmental threat to agriculture particularly wheat crop. The growth and yield of wheat crop is adversely affected by environmental stresses such as soil moisture deficit, high temperature, low light intensity etc. Among these stresses irrigation water is a scare resource, it’s optimization is fundamental to water resources use. It permits better utilization of all other production factors and thus leads to increased yields per unit area and time. The higher requirement of food to feed the increased population with reduced water availability for crop production forces the irrigation researchers and managers to use water-saving irrigation strategies to improve the water productivity (WP) in recent years. Thus, an assessment of the potential for reducing water needs and increasing production is the need of time. The current study aimed to study of this province in order to manage and control related problems. Method: In this context a field experiment was conducted during Rabi season 2016 and 2017, Soil moisture studies were started right from sowing and continued up to maturity of wheat crop. The soil moisture content under all the treatments of three replications was determined just before irrigation and twenty four hours after irrigation from 0-15, 15-30, 30-45 and 45-60 cm soil depths and calculate consumptive use of water, soil moisture depletion pattern and water use efficiency. Result: Results revealed that the maximum consumptive use (350.01 mm) of water found with irrigation schedule at 1.2 ETc and highest water use efficiency (15.32 kg ha-1 mm-1) obtained with irrigation schedule at 1.0 ETc. Among the different wheat cultivars Raj-4120 registered higher consumptive use (332.57 mm) and Raj- 4238 obtained highest water use efficiency (16.13 kg ha-1 mm-1) while crop sown on 15th November recorded higher consumptive use (333.04 mm) and water use efficiency (15.69 kg ha-1 mm-1). Wheat is a surface feeder with fibrous root system, the maximum amount of moisture was depleted in shallow depth (0-15 cm) than deeper layers of soil.


2021 ◽  
pp. 74-82
Author(s):  
N. Mkhatshwa ◽  
M. P. Mabuza ◽  
N. S. Zubuko

Sweet potato (Ipomoea batatas L.) is an economically important food crop in Eswatini. Since its introduction, numerous agronomic research activities were carried out in agricultural research centers, non-governmental organizations, and universities. However, information on the correct vine length for planting to improve sweet potato root yield in Eswatini is scanty. Therefore, this study aimed at helping farmers with the correct vine length to be used for improved growth and yield of sweet potatoes. A field experiment was conducted at the Luyengo campus, crop production farm during the 2019/2020 crops season. It was laid in a Randomized Complete Block Design (RCBD) in a factorial arrangement with three replicates. The treatments were vines planted with or without leaves and different vine lengths; 25 cm, 30 cm, and 35 cm. Kenya white variety was used. Data were collected on growth and yield parameters. Results showed that leaf removal yielded significantly (P<0.05) lower than non-leaf removal. This may be attributed to delayed photosynthetic activity in the former.  The Vine length had no significant effect on yield. It is concluded that vines with leaves be used as planting material, and the length of vines to be used for planting should be 25 to 30 cm.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 165 ◽  
Author(s):  
Nur Abdul Halim ◽  
Rosazlin Abdullah ◽  
Saiful Karsani ◽  
Normaniza Osman ◽  
Qurban Panhwar ◽  
...  

In Malaysia, about 0.5 million ha of acid sulfate soils are found scattered over the east, west, and Sabah and Sarawak regions that can potentially be cultivated with paddy. This type of soil is acidic and not immediately suitable for crop production unless improved by applying some amendments. Thus, the current study was carried out to investigate the effects of various types of soil amendments on the growth, yield, and physiological responses of rice grown in extremely acidic conditions using ground magnesium limestone (GML), basalt, biochar, and compost as soil amendments. The acid sulfate soil with a pH of 3.76 was obtained from a paddy field in Merbok, Kedah. The plant responses were evaluated based on agronomic, physiological, and yield performance. The compost-treated rice showed the best performance in all three criteria. Compost treatment increased the soil pH up to 6.25. Physiological performances such as chlorophyll, photosynthetic rate, and water use efficiency were higher after compost treatment, while transpiration and stomatal conductance showed the highest after GML treatment. It can be concluded that the addition of compost as a soil amendment can increase soil pH and create favorable soil conditions for rice cultivation in acid sulfate soil, leading to improved rice growth performance.


Sign in / Sign up

Export Citation Format

Share Document