scholarly journals Differential response of phosphorus utilization efficiency in rice by tracer technique using phosphorus-32 under phosphorus stress environment

2014 ◽  
Vol 6 (2) ◽  
pp. 362-365
Author(s):  
V. Sanjivkumar ◽  
P. Malarvizhi

In most soils, soil and fertilizer Phosphorus (P) are easily bound by either soil organic matter or chemicals and thus are unavailable to plants unless hydrolyzed to release inorganic phosphate. Therefore, the development of P-efficient rice varieties that can grow and yield better with low P supply is a key to improve crop production. P efficient plants play a major role in increasing crop yields due to shortage of inorganic P fertilizer resources, limited land and water resources and increasing environmental concerns. Based on the P uptake efficiency, four rice genotypes viz.,TNRH 180, CB08504, CB06732 and ADT 47 were selected from the field experiment and used in pot culture experiment with three levels of P using radio isotope technique to quantify the P acquisition efficiency (PAE) and P use efficiency (PUE) and also to determine the native P supplying power of the soils using 32P in low P soils. Growth and yield parameters, grain and straw yield and major nutrients uptake of rice genotypes were increased with enhanced level of phosphorus application. Among the four genotypes, TNRH 180 recorded the highest grain yield and uptake. Increasing the P application rate from 25 to 50 kg P2O5 ha-1 increased the %Pdff in grain and straw for all the genotypes. The mean per cent phosphorus utilization (PPU) ranged between 18.74 and 23.72. The PPU of the genotypes followed the order TNRH 180 (23.72 %) > CB08504 (23.36 %) > CB06732 (20.54%) > ADT 47 (18.74%). The PPU values were higher at lower level of P application (25 kg P2O5 ha-1) for the genotypes TNRH 180, CB08504 and CB06732. From this study showed that rice genotypes have the ability to utilize the both available and unavailable form of phosphorus by secreting some organic acids in the root portion to solubilize. Hence rice genotypes indicated above have the ability to increase phosphorus utilization efficiency.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241842
Author(s):  
Getnet Dino Adem ◽  
Yoshiaki Ueda ◽  
Patrick Enrico Hayes ◽  
Matthias Wissuwa

Phosphorus (P) is an essential macronutrient for plant growth and development. Phosphorus is usually applied as fertilizer obtained from rock phosphate which is a non-renewable resource. Therefore, developing rice varieties that can use P more efficiently is crucial. Here, we investigated genotypic differences in traits related to internal Phosphorus Utilization Efficiency (PUE) in five rice genotypes grown under P-deficient conditions. P-efficient rice genotypes showed higher total biomass. This was partly due to higher root biomass, which in turn relied on preferential allocation of P to roots in these genotypes. Changes in P content and tissue P concentrations were analyzed in individual leaves at different time points. Genotypes belonging to the high-PUE group responded more quickly to P starvation in terms of reducing leaf P concentrations and they were able to reduce these concentrations to a lower level compared to the low-PUE group. Changes in P concentrations were reflected in gene expression levels for genes involved in lipid remodeling. Sulfolipid (OsSQD2) and galactolipid (OsMGD and OsDGD) synthesis-related genes were generally induced due to P starvation with most pronounced up-regulation in OsDGD1 and OsMGD3, but patterns differed between genotypes. A significantly higher expression of OsDGD5 and OsMGD1 & 2 was detected in the youngest fully expanded leaf of the high-PUE genotype group, whereas expression levels were reversed in older leaves. This pattern would confirm that P efficient genotypes react faster to P starvation in terms of freeing P for redistribution to growing tissues and replacing phospholipids with galactolipids in younger leaves may contribute to this aspect.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


Author(s):  
Shinta Lestari Santosa ◽  
I Nyoman Rai ◽  
Wayan Diara

Vegetable cultivation is livelihoods for side Lake Batur communities, Kintamani, Bangli. Hilly natural conditions with a soil texture influenced by the eruption of Mount Batur, 900 m above sea level, and 900-3500 mm high rainfall, causing this region is very suitable for the cultivation of various vegetables, including shallot. One effort to meet the high demand for shallots is that efforts are made to improve cultivation techniques, including fertilizing to improve yields. In modern agriculture, the use of fertilizer is absolutely essential to trigger the level of crop production. The aims is to analyze the combination effect of using of inorganic fertilizer (ZA fertilizer) and organic fertilizer (compost fertilizer) on shallot vegetable cultivation systems on the content of pollutants, N nutrients and onion crop yields on the shores of Lake Batur, Kintamani District, Bangli Regency. The study using RBD with two factors where factor I: provision of organic fertilizer is leaf compost made aerobically (O), consisted of 3 levels, namely: O0 = 0*, O1 = 5* and O2 = 10*and factor II: the application of inorganic fertilizer namely ZA (S) fertilizer, consisted of 3 levels, namely: S0 = 0**, S1 = 50** and S2  = 100**, each repeated 3 times. The parameters observed were the growth and yield of shallots as well as the content of Pb, Zn, Cu and N nutrients in the soil. The nutrient content (N) in the soil, when using chemical fertilizer ZA and compost organic is not significantly different, as well as the results of onion plants, while the content of Pb, Zn and Cu on the use of chemical fertilizer ZA and organic compost, very real different. The highest soil Pb content in S2O1 treatment is 30.07***, the highest soil Zn content in the S2O1 treatment was 28.24***, and the highest soil Cu content in the S1O2 treatment is 17.22***. *= tons/ha **= kg/ha ***= mg/kg Keywords: compost; contents Pb; Zn; Cu of soil; shallot; ZA.


2014 ◽  
Vol 41 (11) ◽  
pp. 1199 ◽  
Author(s):  
Neil C. Turner ◽  
Abraham Blum ◽  
Mehmet Cakir ◽  
Pasquale Steduto ◽  
Roberto Tuberosa ◽  
...  

The objective of the InterDrought conferences is to be a platform for debating key issues that are relevant for increasing the yield and yield stability of crops under drought via integrated approaches. InterDrought-IV, held in Perth, Australia, in September 2013, followed previous InterDrought conferences in bringing together researchers in agronomy, soil science, modelling, physiology, biochemistry, molecular biology, genetics and plant breeding. Key themes were (i) maximising water productivity; (ii) maximising dryland crop production; (iii) adaptation to water-limited environments; (iv) plant productivity under drought through effective water capture, improved transpiration efficiency, and growth and yield; and (v) breeding for water-limited environments through variety development, and trait-based genomics-assisted and transgenic approaches. This paper highlights some key issues and presents recommendations for future action. Improved agronomic interventions were recognised as being important contributors to improved dryland crop yields in water-limited environments, and new methods for exploring root architecture and water capture were highlighted. The increase in crop yields under drought through breeding and selection, the development of high-throughput phenotyping facilities for field-grown and pot-grown plants, and advances in understanding the molecular basis of plant responses and resistance to drought stress were recognised. Managed environment phenotyping facilities, a range of field environments, modelling, and genomic molecular tools are being used to select and release drought-resistant cultivars of all major crops. Delegates discussed how individuals and small teams can contribute to progress, and concluded that interdisciplinary research, linkages to international agricultural research centres, public–private partnerships and continuation of the InterDrought conferences will be instrumental for progress.


2015 ◽  
Vol 4 (4) ◽  
pp. 109 ◽  
Author(s):  
Williams Kwame Atakora ◽  
Mathias Fosu ◽  
S. O. Abebrese ◽  
Michael Asante ◽  
Matthias Wissuwa

<p>Phosphorus (P) deficiency is a major constraint to upland rice production on highly weathered, low activity clay soils in the humid zones of West Africa. There is a paucity of information on the short-term fertilizer P effects on rice on these soils. A field experiment was conducted in 2011 to determine the response of twenty-four (24) upland rice cultivars to fertilizer Phosphorus (P) applied at 0 and 60 kg P ha<sup>−1</sup>. An uncultivated field at SARI research area with available P (Bray 1) P content of 3.0 mg/kg was used for the experiment.</p> <p>The ploughed area was divided into two plots with one plot for +P and the other for -P treatment. Each of the 24 varieties was allocated three rows and spaced at 20 x 10 cm in four replications. The varieties were randomized for each replicate and planted on 2<sup>nd</sup> July 2011 at one seed per hill. Pre-emergence herbicide Pendimethaline 400 g/l (Alligator) was applied at 3.2 L/ha two days after planting followed by one hand weeding. For the (-) P plot, the entire field received N at 60 kg/ha as Sulphate of ammonia and K<sub>2</sub>O at 60 kg/ha as Muriate of Potash. For the (+) P plot, fertilizer was applied at NPK 60-60-60 kg/ha from Sulphate of ammonia, Triple superphosphate and Muriate of potash, respectively. For each plot, the N was split applied.</p> Results showed that the plants that received P were more vigorous and healthier. There was significant variety effect on number of tillers per plant (NOTPP), days to 50% flowering (DFF), days to maturity (DTM), dry weight of biomass (DWOB), number of panicles per plant (NOPPP), and grain yield per plant. Similarly, there was significant phosphorus effect on number of tillers per plant (NOTPP), days to 50% flowering (DFF), days to maturity (DTM), dry weight of biomass (DWOB), number of panicles per plant (NOPPP), and grain yield per plant. There was generally no interactive effect of variety by fertilizer except for DFF and DTM. The number of tillers per plant ranges from 3 – 16 with the overall mean without P application being 4 while overall mean with P application was 9. When P was applied, the number of days to 50 % flowering reduced from 86 days to 79 days. Days to maturity (DTM) was also reduced from 118 to 111 on average by P application. The varieties that were most tolerant to low P were ITA 257, Nerica 3 and TOX 1011-4-A2. The grain yield of ITA 257 remained the same whether P was applied or not. This is the variety that is best adapted to low P. We concluded that rice growth and yield components were affected by Phosphorus application. Plants that received phosphorus flowered and matured earlier. They also accumulated higher biomass and grain yield. ITA 257, Nerica 3 and TOX 1011-4-A2 were most tolerant to P deficiency.


Sign in / Sign up

Export Citation Format

Share Document