The malkarid spiders of New Zealand (Araneae : Malkaridae)

2020 ◽  
Author(s):  
Gustavo Hormiga ◽  
Nikolaj Scharff

This paper addresses the systematics of the New Zealand spiders of the family Malkaridae. Malkarids are small araneoid spiders that live primarily in the leaf litter and mosses of temperate and tropical wet forests in Australia and New Zealand, with the exception of a single species in southern South America and another in New Caledonia. We treat the New Zealand species of Malkaridae that are not members of the subfamily Pararchaeinae, a monophyletic group of 11 new species that we classify in 2 new genera (Tingotingo, gen. nov. and Whakamoke, gen. nov.) and a new subfamily (Tingotinginae, subfam. nov.). We describe, diagnose, illustrate and map the distribution of specimen records of these 11 new species of New Zealand Malkaridae: Tingotingo porotiti, sp. nov., T. pouaru, sp. nov., T. tokorera, sp. nov., T. aho, sp. nov., Whakamoke orongorongo, sp. nov.; W. tarakina, sp. nov.; W. guacamole, sp. nov.; W. hunahuna, sp. nov.; W. paoka, sp. nov.; W. heru, sp. nov.; and W. rakiura, sp. nov. We also treat the phylogenetic relationships of Malkaridae and use the results of our previous work on the molecular phylogeny of Araneoidea as the bases for the classification of the family. Tingotingo, gen. nov. and Whakamoke, gen. nov. are sister clades. Tingotinginae, subfam. nov. is the sister group of the Malkarinae plus Pararchaeinae clade. We further hypothesise and discuss the morphological synapomorphies of Malkaridae, Tingotinginae, subfam. nov. and the two new genera.

ZooKeys ◽  
2020 ◽  
Vol 984 ◽  
pp. 83-132
Author(s):  
Michael E. Irwin ◽  
Shaun L. Winterton ◽  
Mark A. Metz

Stiletto-flies (Diptera: Therevidae) are highly diverse and species-rich in Australia and New Zealand, yet relatively few species have been recorded from neighbouring Papua New Guinea, Indonesia and throughout the remainder of Oceania. Indeed, in New Caledonia only a single species of the widely distributed Australasian genus Anabarhynchus Macquart (Therevinae) is previously known. Herein we describe two new agapophytine genera (i.e., Jeanchazeauiagen. nov., Calophytusgen. nov.), together comprising nine charismatic new species; this represents a first record of the subfamily from New Caledonia. The new genera and species are described and figured.


Zootaxa ◽  
2007 ◽  
Vol 1517 (1) ◽  
pp. 1-52 ◽  
Author(s):  
ZHI-QIANG ZHANG ◽  
QING-HAI FAN

A new family of early derivative Parasitengona (Acari: Prostigmata), Allotanaupodidae fam. nov., is described from New Zealand based on adults and deutonymphs of two new genera and five new species and a new superfamily Allotanaupodoidea is erected to accommodate it. The new family is characterized by the absence of prodorsal trichobothria and sensory areas, the presence of one or two pairs of plates with multiple setae on C to PS rows of dorsal hysterosoma, the presence of only two pairs of genital acetabula in adults, and short, distally inserted palptarsus on the palptibia. The family consists of two subfamilies (Allotanaupodinae subfam. nov. and Paratanaupodinae subfam. nov.), with the former endemic to New Zealand. Allotanaupodinae subfam. nov. has a single genus, Allotanaupodus gen. nov., which is represented by three new species from New Zealand: Allotanaupodus williamsi sp. nov. (type species) from Kawau I., Auckland, Allotanaupodus orete sp. nov. from Orete Forest, Te Puia Hut and Allotanaupodus winksi sp. nov. from Mt. Messenger, Taranaki. The eyeless Paratanaupodinae subfam. nov. consists of two genera: Nanotanaupodus gen. nov. and Paratanaupodus Andre & Lelievre-Farjon, 1960. The type genus Paratanaupodus Andre & Lelievre-Farjon, 1960 was previously placed in the Tanaupodidae and is represented by a single species, Paratanaupodus insensus André & Lelievre-Farjon, 1960, from South America. Nanotanaupodus gen. nov. is represented by two new species from New Zealand: Nanotanaupodus andrei sp. nov. (type species) from Waituhi Saddle and Nanotanaupodus gracehallae sp. nov. from Orete Forest, Te Puia Hut. A key to superfamilies of terrestrial Parasitengona (post-larval stages) is provided, along with keys to subfamilies, genera and species of the new family.


2011 ◽  
Vol 20 (1) ◽  
pp. 161-173
Author(s):  
A.P. Kassatkina

Resuming published and own data, a revision of classification of Chaetognatha is presented. The family Sagittidae Claus & Grobben, 1905 is given a rank of subclass, Sagittiones, characterised, in particular, by the presence of two pairs of sac-like gelatinous structures or two pairs of fins. Besides the order Aphragmophora Tokioka, 1965, it contains the new order Biphragmosagittiformes ord. nov., which is a unique group of Chaetognatha with an unusual combination of morphological characters: the transverse muscles present in both the trunk and the tail sections of the body; the seminal vesicles simple, without internal complex compartments; the presence of two pairs of lateral fins. The only family assigned to the new order, Biphragmosagittidae fam. nov., contains two genera. Diagnoses of the two new genera, Biphragmosagitta gen. nov. (type species B. tarasovi sp. nov. and B. angusticephala sp. nov.) and Biphragmofastigata gen. nov. (type species B. fastigata sp. nov.), detailed descriptions and pictures of the three new species are presented.


2021 ◽  
Vol 20 (7) ◽  
pp. 911-927
Author(s):  
Lucia Muggia ◽  
Yu Quan ◽  
Cécile Gueidan ◽  
Abdullah M. S. Al-Hatmi ◽  
Martin Grube ◽  
...  

AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.


2021 ◽  
Author(s):  
Gonzalo Giribet ◽  
Kate Sheridan ◽  
Caitlin M. Baker ◽  
Christina J. Painting ◽  
Gregory I. Holwell ◽  
...  

The Opiliones family Neopilionidae is restricted to the terranes of the former temperate Gondwana: South America, Africa, Australia, New Caledonia and New Zealand. Despite decades of morphological study of this unique fauna, it has been difficult reconciling the classic species of the group (some described over a century ago) with recent cladistic morphological work and previous molecular work. Here we attempted to investigate the pattern and timing of diversification of Neopilionidae by sampling across the distribution range of the family and sequencing three markers commonly used in Sanger-based approaches (18S rRNA, 28S rRNA and cytochrome-c oxidase subunit I). We recovered a well-supported and stable clade including Ballarra (an Australian ballarrine) and the Enantiobuninae from South America, Australia, New Caledonia and New Zealand, but excluding Vibone (a ballarrine from South Africa). We further found a division between West and East Gondwana, with the South American Thrasychirus/Thrasychiroides always being sister group to an Australian–Zealandian (i.e. Australia + New Zealand + New Caledonia) clade. Resolution of the Australian–Zealandian taxa was analysis-dependent, but some analyses found Martensopsalis, from New Caledonia, as the sister group to an Australian–New Zealand clade. Likewise, the species from New Zealand formed a clade in some analyses, but Mangatangi often came out as a separate lineage from the remaining species. However, the Australian taxa never constituted a monophyletic group, with Ballarra always segregating from the remaining Australian species, which in turn constituted 1–3 clades, depending on the analysis. Our results identify several generic inconsistencies, including the possibility of Thrasychiroides nested within Thrasychirus, Forsteropsalis being paraphyletic with respect to Pantopsalis, and multiple lineages of Megalopsalis in Australia. In addition, the New Zealand Megalopsalis need generic reassignment: Megalopsalis triascuta will require its own genus and M. turneri is here transferred to Forsteropsalis, as Forsteropsalis turneri (Marples, 1944), comb. nov.


Zootaxa ◽  
2007 ◽  
Vol 1604 (1) ◽  
pp. 53-68 ◽  
Author(s):  
LAURENCE A. MOUND

Two new genera and six new species of spore-feeding Thysanoptera are described from Australia, with Australian records of two further species, one from California and one from New Zealand. In the Tribe Pygothripini, subtribe Pygothripina, Ecacleistothrips glorious gen. et sp. n. is a large and highly polymorphic rainforest thrips: the apterous male has a transverse first abdominal tergite, in contrast to the females that have a reduced pelta as is typical of most Phlaeothripidae. Also in this subtribe, Heptathrips cumberi Mound & Walker from New Zealand is recorded widely around the southern coasts of Australia. A key is provided to the six genera of Pygothripini subtribe Allothripina in which the terminal sensorium of the maxillary palps is unusually large. In this group, four wingless species are considered: Minaeithrips aliceae gen. et sp. n. and M. driesseni sp.n. in which the maxillary stylets are wide apart, Allothrips hamideae sp. n. in which the third antennal segment has a basal flange unlike any other member of this widespread genus, and Priesneriella citricauda Hood that was previously known only from California. In the Pygothripini subtribe Macrothripina, Polytrichothrips geoffri sp. n. is described from rainforest; this genus was known previously from a single species in Sarawak. A further rainforest species, Malesiathrips australis sp.n., is described in the Tribe Idolothripini, subtribe Elaphrothripina; this genus was known previously from three species in the Asian and Pacific regions.


2020 ◽  
pp. 1-7
Author(s):  
Michael Hautmann ◽  
Evelyn Friesenbichler ◽  
Eugen Grădinaru ◽  
Romain Jattiot ◽  
Hugo Bucher

Abstract We describe two new genera of Triassic Aviculopectinoidea: Cristaflabellum n. gen., which is biconvex and has a strongly plicate shell, and Globodiscus n. gen., which is equiconvex and externally smooth or nearly so. Globodiscus contains the new species G. kiliani n. gen. n. sp. and G. vinzenti n. gen. n. sp. In order to make the taxonomic concept of the superfamily Aviculopectinoidea more consistent with that of its sister group Pectinoidea (scallops), we use tribes rather than families or subfamilies for accommodating the new taxa. Cristaflabellum is placed in the tribe Antijanirini (previously family Antijaniridae), whereas Globodiscus is made the type genus of the new tribe Globodiscini. Both tribes are placed within the family Aviculopectinidae, which is revised to include both equiconvex and inequiconvex taxa. We suggest that tribes are a more appropriate taxonomic rank for many of the previously erected species-poor families and subfamilies of Aviculopectinoidea. UUID: http://zoobank.org/d143663a-9016-459f-8e24-660102adcf6a


2002 ◽  
Vol 16 (6) ◽  
pp. 957 ◽  
Author(s):  
J. T. Jennings ◽  
A. D. Austin

This study examines the phylogeny, taxonomy, distribution and biology of the gasteruptiid subfamily Hyptiogastrinae and, at the same time, presents an overview of the family. Following a cladistic analysis of 35 discrete morphological characters, two monophyletic genera are recognised, Hyptiogaster Kieffer and Pseudofoenus s. l. Kieffer. As a consequence, the genera Aulacofoenus Kieffer, Crassifoenus Crosskey, and Eufoenus Szépligeti are synonymised with Pseudofoenus. A total of 88 species are recognised for the subfamily, 10 species of Hyptiogaster, which are restricted to mainland Australia, and 78 species of Pseudofoenus, 40 of which are described as new. Pseudofoenus has a restricted Gondwanan distribution and is found in Australia including Tasmania (65 spp.), New Guinea and New Britain (5 spp.), the south-west Pacific (New Caledonia, New Hebrides and Fiji – 2 spp.), New Zealand (4 spp.) and South America (2 spp.). No new species have been recorded from either New Zealand or South America. For Pseudofoenus, information on the distribution of each species, their biology (if known) and an identification key are presented.Following a taxonomic revision, the following new species are described: P. baileyi, sp. nov., P. baitetaensis, sp. nov., P. beverlyae, sp. nov., P. caperatus, sp. nov., P. cardaleae, sp. nov., P. carrabinensis, sp. nov., P. claireae, sp. nov., P. collessi, sp. nov., P. coorowensis, sp. nov., P. crosskeyi, sp. nov., P. douglasorum, sp. nov., P. eliseae, sp. nov., P. ericae, sp. nov., P. eustonensis, sp. nov., P. feckneri, sp. nov., P. gressitti, sp. nov., P. gullanae, sp. nov., P. hackeri, sp. nov., P. imbricatus, sp. nov., P. iqbali, sp. nov., P. kadowi, sp. nov., P. karimuiensis, sp. nov., P. kelleri, sp. nov., P. leinsterensis, sp. nov., P. macdonaldi, sp. nov., P. malkini, sp. nov., P. marshalli, sp. nov., P. masneri, sp. nov., P. mitchellae, sp. nov., P. morganensis, sp. nov., P. nalbarraensis, sp. nov., P. pumilis, sp. nov., P. schmidti, sp. nov., P. stevensi, sp. nov., P. tasmaniensis, sp. nov., P. taylori, sp. nov., P. umboiensis, sp. nov., P. walkeri, sp. nov. and P. zborowskii, sp. nov. The synonymy of Aulacofoenus, Crassifoenus and Eufoenus with Pseudofoenus result in the following new combinations: from Aulacofoenus: P. bungeyi (Jennings & Austin), comb. nov., P. deletangi (Schletterer), comb. nov., P. fallax (Schletterer), comb. nov., P. fletcheri (Jennings & Austin), comb. nov., P. goonooensis (Jennings & Austin), comb. nov., P. infumatus (Schletterer), comb. nov., P. kurmondi (Jennings & Austin), comb. nov., P. loxleyi (Jennings & Austin), comb. nov., P. marionae (Jennings & Austin), comb. nov., P. perenjorii (Jennings & Austin), comb. nov., P. swani (Jennings & Austin), comb. nov., P. thoracicus (Guérin Menéville), comb. nov., P. whiani (Jennings & Austin), comb. nov. and P. wubinensis (Jennings & Austin), comb. nov.; from Crassifoenus: P. houstoni (Jennings & Austin), comb. nov., P. grossitarsis (Kieffer), comb. nov and P. macronyx (Schletterer), comb. nov.; and from Eufoenus: P. antennalis (Schletterer), comb. nov., P. australis (Westwood), comb. nov., P. crassitarsis (Kieffer), comb. nov., P. darwini (Westwood), comb. nov., P. extraneus (Turner), comb. nov., P. ferrugineus (Crosskey), comb. nov., P. floricolus (Turner), comb. nov., P. inaequalis (Turner), comb. nov., P. melanopleurus (Crosskey), comb. nov., P. minimus (Turner), comb. nov., P. nitidiusculus (Turner), comb. nov., P. patellatus (Westwood), comb. nov., P. pilosus (Kieffer), comb. nov., P. reticulatus (Crosskey), comb. nov., P. rieki (Crosskey), comb. nov., P. ritae (Cheesman), comb. nov. and P. spinitarsis (Westwood), comb. nov. Pseudofoenus microcephalus (Crosskey), comb. nov. is transferred from Hyptiogaster and Eufoenus flavinervis (Kieffer) remains incertae sedis.


1927 ◽  
Vol 5 (2) ◽  
pp. 89-104 ◽  
Author(s):  
D. O. Morgan

The classification of the Trematode family Opisthorchiidæ presents some difficulties to the systematist. These difficulties arise partly from the fact that a number of the existing species appear to lack any real morphological characters by which they can be differentiated, slight variations in measurements, together with a difference in host, having been considered sufficient to justify the making of new species. This view has resulted in the placing of undue importance on somewhat minor differences when they do occur in other species, such differences being considered sufficient for creating new genera.The systematist is further confronted with the difficulty of forming definite opinions on the systematic position of some of the species made by earlier workers. Their descriptions and figures are often inadequate owing to the fact that characters which, in the past, were considered of minor importance are now given much closer attention. Examples of the confusion which has arisen from such a position will be referred to in this paper.


Sign in / Sign up

Export Citation Format

Share Document