Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes

2008 ◽  
Vol 59 (2) ◽  
pp. 125 ◽  
Author(s):  
Michael Schagerl ◽  
S. O. Oduor

Temporal changes in total alkalinity, ionic composition and nutrient concentrations were studied in the saline, alkaline endorheic Kenyan Rift Valley Lakes Bogoria, Nakuru and Elmentaita to understand the association of these variables with phytoplankton community structure. In total, 24 taxa were found, with L. Bogoria having the fewest species. Although the cyanobacterium Arthrospira fusiformis dominated the phytoplankton biomass, especially in L. Bogoria, other groups came into play especially during high water levels in L. Nakuru and L. Elmentaita. Cluster analysis based on species biomass resulted in four groups, characterised by 13 indicator taxa. Most of the variation in these groups appeared to be associated with hydrological stability and perhaps biological factors rather than water chemistry, which only explained 44% of the variance in taxa composition on the first four axes derived from redundancy analysis. Species numbers decreased with elevated conductivity and water temperature. Synechocystis sp. occurrence coincided with phosphorus, water temperature and conductivity increase, whereas the distributions of Arthrospira fusiformis and Arthrospira platensis were mainly influenced by both light attenuation and elevated nitrate concentrations. Increases in silica and ammonium and declines in conductivity, total phosphorus and water temperature enhanced diatom abundances. Not only do the results of the present study indicate the unexpectedly high variability of phytoplankton community composition and water chemistry in these three alkaline tropical lakes, but also the data assist our understanding of the factors influencing flamingo populations on these lakes, which are significant conservation reserves and tourist attractions.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2695
Author(s):  
Yejin Kim ◽  
Seok-Hyun Youn ◽  
Hyun Oh ◽  
Jae Kang ◽  
Jae Lee ◽  
...  

The East China Sea (ECS) is the largest marginal sea in the northern western Pacific Ocean. In comparison to various physical studies, little information on the seasonal patterns in community structure of phytoplankton is currently available. Based on high performance liquid chromatography (HPLC) pigment analysis, spatiotemporal variations in phytoplankton community compositions were investigated in the northern ECS. Water temperature and salinity generally decreased toward the western part of the study area but warmer conditions in August led to strong vertical stratification of the water column. In general, major inorganic nutrient concentrations were considerably higher in the western part with a shallow water depth, and consistent with previous results, had no discernable vertical pattern during our observation period except in August. This study also revealed PO4-limited environmental conditions in May and August. The monthly averaged integral chlorophyll-a concentration varied seasonally, highest (35.2 ± 20.22 mg m−2) in May and lowest (5.2 ± 2.54 mg m−2) in February. No distinct vertical differences in phytoplankton community compositions were observed for all the sampling seasons except in August when cyanobacteria predominated in the nutrient-deficient surface layer and diatoms prevailed at deep layer. Canonical correlation analysis results revealed that nutrient distribution and the water temperature were the major drivers of the vertical distribution of phytoplankton communities in August. Spatially, a noticeable difference in phytoplankton community structure between the eastern and western parts was observed in November with diatom domination in the western part and cyanobacteria domination in the eastern part, which were significantly (p < 0.01) correlated with water temperature, salinity, light conditions, and nutrient concentrations. Overall, the two major phytoplankton groups were diatoms (32.0%) and cyanobacteria (20.6%) in the northern ECS and the two groups were negatively correlated, which holds a significant ecological meaning under expected warming ocean conditions.



1996 ◽  
Vol 34 (7-8) ◽  
pp. 237-244 ◽  
Author(s):  
Masaaki Hosomi ◽  
Tetsu Saigusa ◽  
Kenichi Yabunaka ◽  
Takuya Okubo ◽  
Akihiko Murakami

This paper describes a newly developed combined water temperature-ecological (WT-ECO) model which is employed to simulate the effects of global warming on lake and reservoir ecosystems. The WT model includes (i) variations in the eddy diffusion coefficient based on the degree of thermal stratification and the velocity of wind, and (ii) a sub-model for simulating the freezing and thawing processes of surface water, water temperatures, and the mixing rates between two adjacent layers of water. The ECO model then uses these results to calculate the resultant effect on a lake's ecological dynamics, e.g., composition of phytoplankton species, their respective concentrations, and nutrient concentrations. When the model was benchmarked against Lake Yunoko, a dimictic lake, fairly good agreement was obtained over a 4-yr period; thereby indicating it is suitably calibrated. In addition, to assess the effects of global warming on a lake ecosystem, changes in Lake Yunoko's water temperature/quality were simulated in response to an increase in air temperature of 2 - 4°C. Results indicate that such an increase will (i) increase thermal stratification in summer, which increases the nutrient concentrations in bottom water due to nutrient release from bottom sediment, (ii) increase the concentration of phytoplankton at the beginning of the autumn circulation period, and (iii) change the composition of phytoplankton species.



Author(s):  
Jeremy A. Hartsock ◽  
Jessica Piercey ◽  
Melissa K. House ◽  
Dale H. Vitt

AbstractThe experimental Sandhill Wetland is the first permanent reclamation of a composite tailings deposit, and annual water quality monitoring is of specific interest for evaluating and predicting long-term reclamation performance. Here, we present water chemistry monitoring data obtained from Sandhill Wetland (years 2009–2019) and compare results to twelve natural reference wetlands and to environmental quality guidelines for Alberta surface waters. By comparing water quality at Sandhill Wetland and natural sites to established guidelines, we can begin to document the natural background water quality of wetlands in the region and examine if guideline exceedances are seen in natural undisturbed environments, or appear only at active reclamation sites. At Sandhill Wetland the dominant ions in near-surface water were bicarbonate, sulfate, chloride, sodium, calcium, and magnesium. Since the first growing season concentrations for these ions have increased annually, causing concurrent increases in electrical conductivity. In year 2019, water chemistry at Sandhill Wetland was most comparable to regional saline fens, systems that exhibit elevated electrical conductivity and high sodicity. Near-surface water at Sandhill Wetland exceeded water quality guidelines for three substances/properties (dissolved chloride, iron, and total alkalinity) in the most recent year of monitoring. The saline fen natural sites also exceeded water quality guidelines for the same chemical substances/properties, suggesting guideline exceedances are a norm for some natural wetland site types in the region. Of note, in each year of monitoring at Sandhill Wetland, dissolved organic compounds evaluated in sub- and near-surface water were below detection limits.



2001 ◽  
Vol 79 (3) ◽  
pp. 341-361 ◽  
Author(s):  
Stefan Hotes ◽  
Peter Poschlod ◽  
Hiroshige Sakai ◽  
Takashi Inoue

Mires in coastal lowlands in Hokkaido, northern Japan, have repeatedly been affected by flooding events and tephra (aerially transported volcanic ejecta) deposition during their development. Vegetation, hydrology, and stratigraphy of Kiritappu Mire in eastern Hokkaido were investigated along two transects and are discussed in relation to disturbance by mineral deposition. The vegetation pattern showed little relation to past geologic events. Five plant communities, two of which (A and C) could be further divided into subgroups, were distinguished (A, Alnus japonica - Spiraea salicifolia community; B, Sasa chartacea community; C, Myrica gale var. tomentosa - Sphagnum fuscum community; D, Carex lyngbyei community; E, Carex subspathacea - Aster tripolium community). Water levels, pH, electric conductivity, and ionic composition of groundwater and surface water were measured in communities A-C. Mean water levels were similar in communities A and C; in community B, it was lower. The pH was higher in community A than in communities B and C. Ion concentrations were influenced by sea water at some sites. Plant macrofossils and ash contents of 31 cores were analysed. Sedge roots were the dominant peat component, often mixed with remains of Phragmites australis, Sphagnum spp., and Polytrichum juniperinum var. strictum. Ash contents were high, and up to nine different mineral layers consisting of tephra, sand, silt, and clay were detected. In some cases, mineral deposition induced changes in the macrofossil composition of the peat. However, in a greater number of cases, no changes in the macrofossil composition were found at the mineral layers, and most shifts were not related to mineral deposition.Key words: mire, vegetation, hydrology, disturbance, flooding, tephra.



2021 ◽  
Vol 36 ◽  
pp. 100857
Author(s):  
Mathew Herrnegger ◽  
Gabriel Stecher ◽  
Christian Schwatke ◽  
Luke Olang


2003 ◽  
Vol 47 (12) ◽  
pp. 293-300 ◽  
Author(s):  
J. Veenstra ◽  
S. Nolen ◽  
J. Carroll ◽  
C. Ruiz

A 3-year study was conducted by the U.S. Army Corps of Engineers assessing water quality related impacts of aquaculture of 250,000 channel catfish (Ictalurus punctatus) in floating net pens in the Rock Creek Arm of Lake Texoma, Oklahoma/Texas. Five large nylon nets suspended from a floating framework of galvanized metal anchored in open water 100 m offshore made up the net pens with fish stocking densities varying from 88 to 219 fish/m3. Water quality sampling was conducted biweekly from April to September and monthly from October to March at three locations. On all sampling dates field measurements of water temperature, pH, dissolved oxygen, and conductivity were recorded at 1 m depth intervals and water samples were collected at a depth of 0.5 m and near the bottom of the water column at each site. Sample analyses included: total alkalinity, total hardness, turbidity, chloride, sulfate, orthophosphate, total phosphorus, nitrate-N, nitrite-N, total Kjeldahl nitrogen, total organic carbon, dissolved organic carbon, biochemical oxygen demand, and chlorophyll a. The results showed statistically significant decreases in water temperature and dissolved oxygen and significant increases in field conductivity in surface waters near the net pens relative to other sampling sites. The most dramatic water quality effect observed during the study was decrease in dissolved oxygen levels near the net pens following lake turnover in the second year.



2012 ◽  
Vol 4 (1) ◽  
pp. 16-22
Author(s):  
Janardan Pathak ◽  
M. M. Goswami

Diurnal fluctuation of the phytoplankton and zooplankton population (numerical densities) and the physicochemical attributes of water are studied in an aquaculture pond at Guwahati, Assam. In the 24 hour diel cycle, the phytoplankton and zooplankton show significant (t-test, p < 0.01) variation in their numerical density at an interval of 4 hours. The studied physico-chemical parameters of water included Temperature, Total Alkalinity (TA), Total hardness (TH), Dissolved Oxygen (DO), Free Carbon dioxide (FCO2) and pH are analyzed concurrently, which reveals a significant fluctuation (t-test, p< .01) in the day and night hours. Multivariate correlation analysis portrays significant and positive correlations among the total population density of phytoplankton with respect to water temperature (r = 0.845, p<0.05) and pH (r = 0.881, p< 0.01) while it maintains significant negative correlations with TA (r = -0.837, p<0.05), TH (r = -0.768, p< 0.05) and FCO2 (r = -0.830, p<0.05). However, total numerical density of zooplankton reveals positive and significant correlations with TA (r = 0.842, p< 0.05) and FCO2 (r= 0.758, p< 0.05) while it shows significant negative correlations with water temperature (r = -0.906, p< 0.01) and pH (r =- 0.912, p< 0.01).



2013 ◽  
Vol 1 (1) ◽  
pp. 48
Author(s):  
ABM Mohsin ◽  
Roni Chandra Mondal

The behaviour of fourteen exotic ornamental fishes of Bangladesh under starved condition in aquaria was experimented from January to December, 2011. Fishes were belonging to 13 genera, 09 families and 4 orders. Two treatments each with three replications were used. Four different behavioural phases of fish were monitored through constant observation. Almost all the behavioural phases were seen earlier in the fishes of treatment T1. Marble angel survived more (1022±4.02 hrs; T2) than others. The lowest survival period (116±2.44 hrs; T1) was seen for albino suckermouth. Fishes were died earlier in T1 than T2, due to presence or absence of aeration facilities. Water temperature, dissolved oxygen, free CO2, pH, total alkalinity, ammonia-nitrogen and chlorine level were found to be varied from 25.66±0.17 to 28.66±0.35°C, 3.80±0.06 to 4.73±0.07 mg/l, 9.21±0.05 to 11.75±0.03 mg/l, 7.13±0.05 to 7.47±0.07, 76.66±1.64 to 108.92±3.20 mg/l, 0.0010±0.0006 to 0.0133±0.002 mg/l and 0.0045±0.001 to 0.012±0.0014 mg/l, respectively. The research findings would be helpful in gathering basic knowledge on different behavioural phases through which aquarists can maintain primitive behavioural phase in their aquaria.  Further research work is suggested in the aforesaid theme massively.



2016 ◽  
Vol 47 (4) ◽  
pp. 888-901 ◽  
Author(s):  
Marek Marciniak ◽  
Anna Szczucińska

The aim of this paper is to study diurnal fluctuations of the water level in streams draining headwaters and to identify the controlling factors. The fieldwork was carried out in the Gryżynka River catchment, western Poland. The water levels of three streams draining into the headwaters via a group of springs were monitored in the years 2011–2014. Changes in the water pressure and water temperature were recorded by automatic sensors – Schlumberger MiniDiver type. Simultaneously, Barodiver type sensors were used to record air temperature and atmospheric pressure, as it was necessary to adjust the data collected by the MiniDivers calculate the water level. The results showed that diurnal fluctuations in water level of the streams ranged from 2 to 4 cm (approximately 10% of total water depth) and were well correlated with the changes in evapotranspiration as well as air temperature. The observed water level fluctuations likely have resulted from processes occurring in the headwaters. Good correlation with atmospheric conditions indicates control by daily variations of the local climate. However, the relationship with water temperature suggests that fluctuations are also caused by changes in the temperature-dependent water viscosity and, consequently, by diurnal changes in the hydraulic conductivity of the hyporheic zone.



2020 ◽  
Vol 29 (1) ◽  
pp. 41-55
Author(s):  
D.A. Edokpa ◽  
J.O. Obieroma

This study explored the linkages between catchment characteristics (topography, land cover, soil and geology), average water chemistry (pH, calcium, magnesium, sulphate, nitrate, ammonium, orthophosphate, iron, zinc and lead) and rainfall in the Ikpoba River catchment, southern Nigeria, using statistical and locality-based GIS analyses. The results show that sites with high rainfall and percentage cover of arable and sand-gravel-clay lithologies were characterized by high acidity. There were strong links between average nutrient (𝑃𝑂43−-P, 𝑁𝐻4+-N and 𝑁𝑂3−-N) concentrations and diffuse agricultural sources in the catchment. Rainfall was strongly related to 𝑆𝑂42−, 𝑃𝑂43−-P and 𝑁𝐻4+-N suggesting that atmospheric deposition may influence their riverine concentrations. Results also suggest that decomposition of organic matter from forest stands was a significant driver of nutrient concentrations. Although metals (Fe2+ and Zn2+) were positively related to bedrock geology of sand-gravel-clay, there was no clear link between Pb2+ and the catchment characteristics investigated. Wetlands was found to be attenuating river water chemistry especially 𝑆𝑂42−, 𝑃𝑂43−-P and 𝑁𝐻4+-N concentrations. To underpin current environmental protection strategies, there is need to integrate a GIS-based analysis approach with monitoring data to fully identify the variability patterns in river water chemistry dynamics at local and multiple scales of water resource management in Nigeria. Key words: river catchment, water quality, metals, nutrients, GIS.



Sign in / Sign up

Export Citation Format

Share Document