Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream

2009 ◽  
Vol 60 (10) ◽  
pp. 990 ◽  
Author(s):  
Juliana Silva França ◽  
Rener Silva Gregório ◽  
Joana D'Arc de Paula ◽  
José Francisco Gonçalves Júnior ◽  
Fernando Alves Ferreira ◽  
...  

Riparian vegetation provides the nutrient and energy input that maintains the metabolism and biodiversity in tropical headwater streams. In the present study, it was hypothesised that ~30% of riparian plant species contribute over 70% of coarse particulate organic matter and, because tropical plants are perennial and semi-deciduous, it was expected that leaf fall would occur year round. The aims of the present study were to evaluate the composition and structure of the plant riparian zone and the input and associated benthic stock of organic matter. The riparian vegetation was composed of 99 taxa. The most abundant plant species were Tapirira obtusa, Sclerolobium rugosum, Croton urucurana, Byrsonima sp. and Inga sp. The input and benthic stock showed a seasonal pattern, with higher values recorded at the end of the dry season and at the beginning of tropical storms. The biomass contributed monthly by the vegetation ranged from 28 ± 6 g m–2 to 38 ± 11 g m–2, and the mean monthly benthic standing stock was 138 ± 57 g m–2. The results illustrate the importance of riparian vegetation as an energy source to tropical streams and how individual plant species contribute to organic matter inputs in these ecosystems.

2020 ◽  
Vol 13 (5) ◽  
pp. 621-632
Author(s):  
Kelly A Steinberg ◽  
Kim D Eichhorst ◽  
Jennifer A Rudgers

Abstract Aims Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to changes in the mean and variance of groundwater resources. Methods We leveraged spatiotemporal variation in long-term datasets of riparian vegetation cover and groundwater levels to build the first groundwater sensitivity functions for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered with declining groundwater stores. Important Findings Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater inter-annual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the short time series (16 years) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores.


2013 ◽  
Vol 85 (4) ◽  
pp. 1449-1460 ◽  
Author(s):  
MAINARA F. CASCAES ◽  
VANILDE CITADINI-ZANETTE ◽  
BIRGIT HARTER-MARQUES

Phenological studies assist in forest ecosystems comprehension and evaluation of resource availability for wildlife, as well as in improving the understanding of relationships between plants and their pollinators and dispersers. This study aims to describe the reproductive phenophases of riparian plant species and correlate them with climatic variables. The reproductive phenology was analyzed biweekly throughout one year, recording the absence or presence of flowers/fruits. The flowering phenophase occurred throughout the year, with an increase in number of species in blossom in October, November, and December. The flowering peak of the community was observed in November. The fruiting phenophase also occurred throughout the year and showed an increase of species fruiting in June with a slight decrease in August and September. The data obtained in this study, when compared with other studies in different Atlantic Rainforest areas, indicates a seasonal pattern for the flowering phenophase and a variation in fruit availability throughout the year as well as in the fruiting peaks. Therefore, studies that observe flowering and fruiting events in loco are of main importance because they provide information on reproductive seasons of species for use in environmental restoration projects and thus alleviate the situation of degradation of riparian forests.


2003 ◽  
Vol 51 (6) ◽  
pp. 667 ◽  
Author(s):  
A. J. Lymbery ◽  
R. G. Doupé ◽  
N. E. Pettit

Although the salinisation of streams has long been recognised as one of Western Australia's most serious environmental and resource problems, there is very little published information on the effects of salinisation on riparian flora and fauna. We studied riparian vegetation in three experimental catchments on the Collie River in Western Australia. The catchments are situated within a 5-km area of state forest and are geologically and botanically similar, but differ in the extent of clearing, groundwater levels and stream salinity. In each catchment, transects were taken perpendicular to the direction of streamflow, and 4-m2 quadrats taken along each transect. Within each quadrat, soil salinity was measured, all plants were identified to species level and percentage cover estimated. The catchments differed significantly in soil salinity, with salinity being greatest in the most extensively cleared catchment and increasing towards the floor of the valley. Plant-species richness, species diversity and species composition were significantly related to soil salinity, both among catchments and among quadrats within the most extensively cleared catchment. Plant-species richness and diversity decreased with increasing soil salinity, an effect that may be partly due to a decline in perennial herb and shrub species. This may have an impact on other components of the riparian ecosystem.


2001 ◽  
Vol 25 (1) ◽  
pp. 22-52 ◽  
Author(s):  
David P. Tickner ◽  
Penelope G. Angold ◽  
Angela M. Gurnell ◽  
J. Owen Mountford

Biological invasions are a threat to ecosystems across all biogeographical realms. Riparian habitats are considered to be particularly prone to invasion by alien plant species and, because riparian vegetation plays a key role in both aquatic and terrestrial ecosystems, research in this field has increased. Most studies have focused on the biology and autecology of invasive species and biogeographical aspects of their spread. However, given that hydrogeomorphological processes greatly influence the structure of riparian plant communities, and that these communities in turn affect hydrology and fluvial geomorphology, scant attention has been paid to the interactions between invasions and these physical processes. Similarly, relatively little research has been undertaken on competitive interactions between alien and native riparian plant species. Further research in these fields is necessary at a variety of spatial and temporal scales before the dynamics of riparian invasions, and their impacts, can be properly understood.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Zherebker ◽  
Yury Kostyukevich ◽  
Dmitry S. Volkov ◽  
Ratibor G. Chumakov ◽  
Lukas Friederici ◽  
...  

AbstractDespite broad application of different analytical techniques for studies on organic matter of chondrite meteorites, information about composition and structure of individual compounds is still very limited due to extreme molecular diversity of extraterrestrial organic matter. Here we present the first application of isotopic exchange assisted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for analysis of alkali extractable fraction of insoluble organic matter (IOM) of the Murchison and Allende meteorites. This allowed us to determine the individual S-containing ions with different types of sulfur atoms in IOM. Thiols, thiophenes, sulfoxides, sulfonyls and sulfonates were identified in both samples but with different proportions, which contribution corroborated with the hydrothermal and thermal history of the meteorites. The results were supported by XPS and thermogravimetric analysis coupled to FTICR MS. The latter was applied for the first time for analysis of chondritic IOM. To emphasize the peculiar extraterrestrial origin of IOM we have compared it with coal kerogen, which is characterized by the comparable complexity of molecular composition but its aromatic nature and low oxygen content can be ascribed almost exclusively to degradation of biomacromolecules.


2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


1986 ◽  
Vol 107 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Lindsey Caird ◽  
W. Holmes

SUMMARYInformation on the total organic matter intake, concentrates supplied (C), live weight (LW), week of lactation (WL), milk yield (MY), herbage organic matter digestibility (HOMD), herbage mass, sward height (SHT) or herbage allowance (HAL) measured individually for 357 cows at one of three sites was assembled. Observed intake was compared with intakes predicted by existing intake equations and new prediction equations based on regression models or regression and least-squares constants were developed. Major factors affecting intake were MY, LW, WL, C and HAL or SHT. Although HOMD was correlated with intake, better predictions were obtained when HOMD was omitted. There were differences between sites possibly associated with differences in measurement techniques.The predictive value of some existing equations and new equations were tested against independent sets of data. A simple equation (A) based on MY and LW (Ministry of Agriculture, Fisheries and Food, 1975) gave satisfactory average predictions but the mean square prediction error (MSPE) was high. The equations of Vadiveloo & Holmes (1979) adjusted for bias gave a relatively low MSPE. The preferred new equations for grazing cattle included MY, LW, WL, C and HAL or SHT, and their MSPE were similar to or lower than for indoor equations.The discussion indicates that a simple equation (A) would give adequate predictions for farm planning. The more detailed equations illustrate the inter-relations of animal with sward conditions and concentrate allowances. Predicted intakes may deviate from actual intakes because of short-term changes in body reserves.


Author(s):  
S. Vanhove ◽  
H.J. Lee ◽  
M. Beghyn ◽  
D. Van Gansbeke ◽  
S. Brockington ◽  
...  

The metazoan meiobenthos was investigated in an Antarctic coastal sediment (Factory Cove, Signy Island, Antarctica). The fine sands contained much higher abundances compared to major sublittoral sediments worldwide. Classified second after Narrangansett Bay (North Atlantic) they reached numbers of 13 × 106ind m-2. The meiofauna was highly abundant in the surface layers, but densities decreased sharply below 2 cm. Vertical profiles mirrored steep gradients of microbiota, chloropigments and organic matter and were coincident with chemical stratification. Spatial patchiness manifested especially in the surface layer. Nematodes dominated (up to 90%), andAponema, Chromctdorita, Diplolaimella, Daptonema, MicrolaimusandNeochromadoraconstituted almost the entire community. Overall, the nematode fauna showed a strong similarity with fine sand communities elsewhere. The dominant trophic strategies were epistrarum and non-selective deposit feeding, but the applied classification for feeding guild structure of the nematodes of Factory Cove is discussed. High standing stock, low diversity and shallow depth distribution may have occurred because of the high nutritive (chlorophyll exceeded lOOOmgm-2and constituted almost 50% of the organic pool) and reductive character of the benthic environment. These observations must have originated from the substantial input of fresh organic matter from phytoplankton and microphytobenthic production, typical for an Antarctic coastal ecosystem during the austral summer.


Sign in / Sign up

Export Citation Format

Share Document