Behaviour of iron and manganese in the Yarra estuary

1980 ◽  
Vol 31 (5) ◽  
pp. 597 ◽  
Author(s):  
M Ellaway ◽  
R Beckett ◽  
BT Hart

The behaviour of iron and manganese in the Yarra estuary (a rather small, well-stratified estuary) is shown to be closely linked with the magnitude of the Yarra River inflow. When river flows are average to high, the filterable metals are present largely in bound or non-ion- exchangeable forms (iron > 90%, manganese 70-80%). Filterable iron levels in surface water from the estuary decreased with increasing salinity, and the filterable manganese levels firstly increased in the upper, low-salinity region of the estuary and then decreased with increasing salinity. Possible reasons for these changes are discussed. When low river flows existed, the concentration of filterable iron and manganese both increased markedly in the bottom, saline water of the estuary. Mixing of small amounts of these enriched bottom waters with outflowing surface waters resulted in the concentrations of filterable metal in surface water increasing with increasing salinity.

2015 ◽  
Vol 6 (1) ◽  
pp. 131-140
Author(s):  
MF Karim ◽  
MW Zaman ◽  
R Sultana ◽  
MU Nizam ◽  
MR Kamruzzaman

A study was carried out with 25 pond water samples of Bhola Sadar Upazila to assess the quality of surface water for irrigation, aquaculture, drinking and livestock consumption. Chemical analyses of different parameters were done to assess the quality of water. All of the water samples showed slightly acidic in nature. Sixteen surface water samples were not suitable for drinking and aquaculture in respect of pH (pH <6.5). Electrical conductivity (EC) categorized the waters as “low salinity” (C1) to “medium salinity” (C2) class for irrigation. With respect to total dissolved solids surface waters were within “highest desirable limit” for drinking and irrigation and suitable for livestock consumption and aquaculture. Calcium and Magnesium content rated the samples as “maximum permissible” and “highest desirable” limit for drinking. All the samples were suitable for drinking in case of Na and K, 21 samples were not suitable for aquaculture due to higher (>5.0 mg L-1) K content. Six samples were unsuitable for livestock due to higher (Cl >30mgL- 1) Cl values. SSP rated 9 samples as “good”, 1 as “excellent”, 6 as “doubtful” and 9 as “permissible” for irrigation. With respect to RSC 21 samples were “suitable”, 3 were “marginal” and 1 was “unsuitable” for irrigation. Hardness classified 14 samples within “moderately hard”, 10 within “soft” and only one as “hard” limit for irrigation and 1 sample (No. 16) was unsuitable for livestock consumption. P, B, Cu and As concentration categorized all the samples suitable for irrigation, aquaculture, drinking and livestock consumption.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22053 J. Environ. Sci. & Natural Resources, 6(1): 131-140 2013


1966 ◽  
Vol 23 (7) ◽  
pp. 947-961 ◽  
Author(s):  
Geoffrey Power ◽  
Gilles Shooner

Morphometric and hydrographic conditions indicated Nabisipi River, Quebec, has a fjord-type estuary with warm surface water of low salinity flowing out over cold saline water from the Gulf of St. Lawrence at all phases of the tidal cycle. The age, weight, and condition factors of 231 juvenile salmon from the estuary and 200 from the lower reaches of the river are given. Ages ranged from 1+ to 4+, condition factors (100 × weight in grams divided by the length in centimeters cubed) were slightly below 1.0 in the river and slightly higher in the estuary. Amphipods and capelin eggs were important constituents in the diet in the estuary, Corixidae in the river. Tagging indicated a growth rate of about 0.8 mm/day in the estuary. Both tagging and the handling of marked fish retarded growth. Tagging retarded growth for approximately 20 days. Tagging returns indicated a population of between 700 and 2500 fish near the mouth of the estuary in June and July 1961. These were thought to be remnants of the spring smolt run. In addition there was a small resident population of salmon parr living in the estuary. Numbers of fish in the estuary changed considerably from year to year.


2020 ◽  
Author(s):  
Wout Krijgsman ◽  
Arjen Grothe ◽  
Federico Andreetto ◽  
Gert-Jan Reichart ◽  
Mariette Wolthers ◽  
...  

&lt;p&gt;&lt;strong&gt;During the so-called Messinian Salinity Crisis (MSC: 5.97-5.33 Myr ago), reduced exchange with the Atlantic Ocean caused the Mediterranean to develop into a &amp;#8220;saline giant&amp;#8221; wherein ~&lt;/strong&gt;&lt;strong&gt;1 million km&lt;sup&gt;3&lt;/sup&gt; of evaporites &lt;/strong&gt;&lt;strong&gt;(gypsum and halite) were deposited. Despite decades of research it is still poorly understood exactly how and where in the water column these evaporites formed. Gypsum formation commonly requires enhanced dry conditions (evaporation exceeding precipitation), but recent studies also suggested major freshwater inputs into the Mediterranean during MSC-gypsum formation. Here we use strontium isotope ratios of ostracods to show that low-saline water from the Paratethys Seas actually contributed to the precipitation of Mediterranean evaporites. This apparent paradox urges for an alternative mechanism underlying gypsum precipitation. We propose that Paratethys inflow would enhance stratification in the Mediterranean and result in a low-salinity surface-water layer with high Ca/Cl and SO&lt;sub&gt;4&lt;/sub&gt;/Cl ratios. We show that evaporation of this surface water can become saturated in gypsum at a salinity of ~40, in line with salinities reported from fluid inclusions in MSC evaporites.&lt;/strong&gt;&lt;/p&gt;


2007 ◽  
Vol 7 (3) ◽  
pp. 103-110
Author(s):  
C. Schilling ◽  
M. Zessner ◽  
A.P. Blaschke ◽  
D. Gutknecht ◽  
H. Kroiss

Two Austrian case study regions within the Danube basin have been selected for detailed investigations of groundwater and surface water quality at the catchment scale. Water balance calculations have been performed using the conceptual continuous time SWAT 2000 model to characterise catchment hydrology and to identify individual runoff components contributing to river discharge. Nitrogen emission calculations have been performed using the empirical emission model MONERIS to relate individual runoff components to specific nitrogen emissions and for the quantification of total nitrogen emissions to surface waters. Calculated total nitrogen emissions to surface waters using the MONERIS model were significantly influenced by hydrological conditions. For both catchments the groundwater could be identified as major emission pathway of nitrogen emissions to the surface waters. Since most of the nitrogen is emitted by groundwater to the surface water, denitrification in groundwater is of considerable importance reducing nitrogen levels in groundwater along the flow path towards the surface water. An approach was adopted for the grid-oriented estimation of diffuse nitrogen emissions based on calculated groundwater residence time distributions. Denitrification in groundwater was considered using a half life time approach. It could be shown that more than 90% of the total diffuse nitrogen emissions were contributed by areas with low groundwater residence times and short distances to the surface water. Thus, managing diffuse nitrogen emissions the location of catchment areas has to be considered as well as hydrological and hydrogeological conditions, which significantly influence denitrification in the groundwater and reduce nitrogen levels in groundwater on the flow path towards the surface water.


Author(s):  
Evgeniy Yakushev ◽  
Anna Gebruk ◽  
Alexander Osadchiev ◽  
Svetlana Pakhomova ◽  
Amy Lusher ◽  
...  

AbstractPlastic pollution is globally recognised as a threat to marine ecosystems, habitats, and wildlife, and it has now reached remote locations such as the Arctic Ocean. Nevertheless, the distribution of microplastics in the Eurasian Arctic is particularly underreported. Here we present analyses of 60 subsurface pump water samples and 48 surface neuston net samples from the Eurasian Arctic with the goal to quantify and classify microplastics in relation to oceanographic conditions. In our study area, we found on average 0.004 items of microplastics per m3 in the surface samples, and 0.8 items per m3 in the subsurface samples. Microplastic characteristics differ significantly between Atlantic surface water, Polar surface water and discharge plumes of the Great Siberian Rivers, allowing identification of two sources of microplastic pollution (p < 0.05 for surface area, morphology, and polymer types). The highest weight concentration of microplastics was observed within surface waters of Atlantic origin. Siberian river discharge was identified as the second largest source. We conclude that these water masses govern the distribution of microplastics in the Eurasian Arctic. The microplastics properties (i.e. abundance, polymer type, size, weight concentrations) can be used for identification of the water masses.


1988 ◽  
Vol 20 (3) ◽  
pp. 149-163 ◽  
Author(s):  
Carol Braester ◽  
Rudolf Martinell

Nearly one fifth of all water used in the world is obtained from groundwater. The protection of water has become a high priority goal. During the last decades pollution of water has become more and more severe. Today groundwater is more and more used in comparison with surface water. Recently we have seen accidents, which can pollute nearly all surface water very quickly. Generally the groundwater is easier to protect, as well as cheaper to purify, and above all it is of better quality than the surface water. During the past two decades, alternatives to the traditional method of treating the water in filters have been developed, that is in situ water treatment i.e. the VYREDOX and NITREDOX methods. The most common problem regarding groundwater is too high content of iron and manganese, which can be reduced with the VYREDOX method. In some areas today there are severe problems with pollution by hydrocarbons and nitrate as well, and with modification of the VYREDOX treatment method it is used for hydrocarbon and nitrate treatment as well. The method to reduce the nitrate and nitrite is known as the NITREDOX method.


2014 ◽  
Vol 16 (7) ◽  
pp. 1772-1778 ◽  
Author(s):  
John Selker ◽  
Frank Selker ◽  
Julie Huff ◽  
Russ Short ◽  
Deborah Edwards ◽  
...  

Identifying or ruling out groundwater discharges into sediment and surface waters is often critical for evaluating impacts and for planning remedial actions.


Author(s):  
Qi Wei ◽  
Junzeng Xu ◽  
Linxian Liao ◽  
Yawei Li ◽  
Haiyu Wang ◽  
...  

To reveal the effect of irrigation salinity on soil nitrous oxide (N2O) emission, pot experiments were designed with three irrigation salinity levels (NaCl and CaCl2 of 1, 2.5 and 4 g/L equivalence, Ec = 3.6, 8.1 and 12.7 ds/m), either for 0 kg N/ha (N0) or 120 kg N/ha (N120) nitrogen inputs. N2O emissions from soils irrigated at different salinity levels varied in a similar pattern which was triggered by soil moisture dynamics. Yet, the magnitudes of pulse N2O fluxes were significantly varied, with the peak flux at 5 g/L irrigation salinity level being much higher than at 2 and 8 g/L. Compared to fresh water irrigated soils, cumulative N2O fluxes were reduced by 22.7% and 39.6% (N0), 29.1% and 39.2% (N120) for soils irrigated with 2 and 8 g/L saline water, while they were increased by 87.7% (N0) and 58.3% (N120) for soils irrigated with 5 g/L saline water. These results suggested that the effect degree of salinity on consumption and production of N2O might vary among irrigation salinity ranges. As such, desalinating brackish water to a low salinity level (such as 2 g/L) before it is used for irrigation might be helpful for solving water resources crises and mitigating soil N2O emissions.


2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Tineke H. Jones ◽  
Julie Brassard ◽  
Edward Topp ◽  
Graham Wilkes ◽  
David R. Lapen

ABSTRACT From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml−1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml−1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets.


2012 ◽  
Vol 84 (2) ◽  
pp. 427-442 ◽  
Author(s):  
Winston F.O. Gonçalves ◽  
Wanilson Luiz-Silva ◽  
Wilson Machado ◽  
Erico C. Nizoli ◽  
Ricardo E. Santelli

The geochemical composition of sediment pore water was investigated in comparison with the composition of sediment particles and surface water in an estuary within one of the most industrialized areas in Latin America (Santos-Cubatão estuarine system, SE Brazil). Pore and surface waters presented anomalously high levels of F-, NH4+, Fe, Mn and P due to two industrial point sources. In the summer, when SO4(2-)/Cl- ratios suggested an enhanced sulfate reduction, the higher dissolved levels observed in pore waters for some metals (e.g., Cu and Ni) were attributed to reductive dissolution of oxidized phases. Results evidenced that the risks of surface water concentration increase due to diffusion or advection from pore water are probably dependent on coupled influences of tidal pumping and groundwater inputs.


Sign in / Sign up

Export Citation Format

Share Document