scholarly journals The Thermal Expansion of an Almost Linear Chain

1963 ◽  
Vol 16 (2) ◽  
pp. 193 ◽  
Author(s):  
P Lloyd ◽  
JJ O'Dwyer

A linear chain model of a close-packed line of atoms in a solid has been constructed. The model differs from usual linear chain models in that the chain is not strictly one-dimensional, the individual atoms being free to move in three dimensions. To account for the interaction of the chain with its surroundings an effective potential has been introduced. When the thermal expansion of solid argon is calculated, satisfactory agreement with experiment is obtained in the classical region.

2019 ◽  
Vol 75 (11) ◽  
pp. 1475-1481 ◽  
Author(s):  
Wenlong Lan ◽  
Zhen Zhou ◽  
Jie Li ◽  
Yong Dou ◽  
Xiaoyun Hao ◽  
...  

A new cyanide-bridged FeIII–MnII heterobimetallic coordination polymer (CP), namely catena-poly[[[N,N′-(1,2-phenylene)bis(pyridine-2-carboxamidato)-κ4 N,N′,N′′,N′′′]iron(III)]-μ-cyanido-κ2 C:N-[bis(4,4′-bipyridine-κN)bis(methanol-κO)manganese(II)]-μ-cyanido-κ2 N:C], {[FeMn(C18H12N4O2)(CN)2(C10H8N2)2(CH3OH)2]ClO4} n , (1), was prepared by the self-assembly of the trans-dicyanidoiron(III)-containing building block [Fe(bpb)(CN)2]− [bpb2− = N,N′-(1,2-phenylene)bis(pyridine-2-carboxamidate)], [Mn(ClO4)2]·6H2O and 4,4′-bipyridine, and was structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction analysis shows that CP 1 possesses a cationic linear chain structure consisting of alternating cyanide-bridged Fe–Mn units, with free perchlorate as the charge-balancing anion, which can be further extended into a two-dimensional supramolecular sheet structure via inter-chain π–π interactions between the 4,4′-bipyridine ligands. Within the chain, each MnII ion is six-coordinated by an N6 unit and is involved in a slightly distorted octahedral coordination geometry. Investigation of the magnetic properties of 1 reveals an antiferromagnetic coupling between the cyanide-bridged FeIII and MnII ions. A best fit of the magnetic susceptibility based on the one-dimensional alternating chain model leads to the magnetic coupling constants J 1 = −1.35 and J 2 = −1.05 cm−1, and the antiferromagnetic coupling was further confirmed by spin Hamiltonian-based density functional theoretical (DFT) calculations.


1963 ◽  
Vol 16 (3) ◽  
pp. 314
Author(s):  
P Lloyd ◽  
JJ O'Dwyer

A series expansion in powers of Planck's constant is adapted to yield the quantum mechanical correction to the classical statistics of an "almost one�dimensional" system. The result is of validity at the high temperature end only of the specifically quantum temperature region. Application to the thermal expansion of solid argon gives reasonable agreement with experiment.


2019 ◽  
Vol 35 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Michael J. Burtscher ◽  
Jeannette Oostlander

Abstract. Team cognition plays an important role in predicting team processes and outcomes. Thus far, research has focused on structured cognition while paying little attention to perceptual cognition. The lack of research on perceptual team cognition can be attributed to the absence of an appropriate measure. To address this gap, we introduce the construct of perceived mutual understanding (PMU) as a type of perceptual team cognition and describe the development of a respective measure – the PMU-scale. Based on three samples from different team settings ( NTotal = 566), our findings show that the scale has good psychometric properties – both at the individual as well as at the team-level. Item parameters were improved during a multistage process. Exploratory as well as confirmatory factor analyses indicate that PMU is a one-dimensional construct. The scale demonstrates sufficient internal reliability. Correlational analyses provide initial proof of construct validity. Finally, common indicators for inter-rater reliability and inter-rater agreement suggest that treating PMU as a team-level construct is justified. The PMU-scale represents a convenient and versatile measure that will potentially foster empirical research on perceptual team cognition and thereby contribute to the advancement of team cognition research in general.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 506
Author(s):  
Sho Nakade ◽  
Kazuki Kanki ◽  
Satoshi Tanaka ◽  
Tomio Petrosky

An interesting anomaly in the diffusion process with an apparently negative diffusion coefficient defined through the mean-square displacement in a one-dimensional quantum molecular chain model is shown. Nevertheless, the system satisfies the H-theorem so that the second law of thermodynamics is satisfied. The reason why the “diffusion constant” becomes negative is due to the effect of the phase mixing process, which is a characteristic result of the one-dimensionality of the system. We illustrate the situation where this negative “diffusion constant” appears.


1971 ◽  
Vol 26 (1) ◽  
pp. 10-17 ◽  
Author(s):  
A. R. Allnatt

AbstractA kinetic equation is derived for the singlet distribution function for a heavy impurity in a lattice of lighter atoms in a temperature gradient. In the one dimensional case the equation can be solved to find formal expressions for the jump probability and hence the heat of transport, q*. for a single vacancy jump of the impurity, q* is the sum of the enthalpy of activation, a term involving only averaging in an equilibrium ensemble, and two non-equilibrium terms in­volving time correlation functions. The most important non-equilibrium term concerns the cor­relation between the force on the impurity and a microscopic heat flux. A plausible extension to three dimensions is suggested and the relation to earlier isothermal and non-isothermal theories is indicated


2020 ◽  
pp. 108602661989399 ◽  
Author(s):  
Franziska Sump ◽  
Sangyoon Yi

Organizations often respond in different ways to common external shocks. To advance theories on organizational adaptation and performance heterogeneity, it is essential to understand different reasons for different organizational responses. We examine how incumbents in carbon-intensive industries adapt to heightened environmental pressure to reduce carbon emissions. Based on a review of the literature, we propose three dimensions along which diverse organizational responses can be efficiently mapped out: goal, timing, and scope. Building on our proposed dimensions, we develop a typology of five different organizational responses. With this, we show that organizational responses are more diverse than a one-dimensional scale could show but that the heterogeneity is somehow limited as the positions on the dimensions are not independent but correlated. To understand this observed limited heterogeneity, we proceed by identifying reasons behind different organizational responses. Furthermore, we discuss the theoretical implications of our findings for research on organizational adaptation and sustainability.


1994 ◽  
Vol 116 (2) ◽  
pp. 164-171 ◽  
Author(s):  
P. D. Schreuders ◽  
K. R. Diller ◽  
J. J. Beaman ◽  
H. M. Paynter

A one-dimensional multicomponent kinetic model was developed to simulate the interstitial diffusion of macromolecules in a three component system, consisting of water, the macromolecule and the interstitial matrix. Movement of the individual components was modeled as occurring in finite jumps between discrete low energy wells along paths defined in terms of species occupation. The flow rate was expressed as a function of the local species concentration, the jump distance, and a kinetic frequency parameter. The model, implemented in pseudo-bond graph form, was examined by fitting it to data obtained for the transport of fluorescein tagged dextran to determine the kinetic constants for that specific system.


Sign in / Sign up

Export Citation Format

Share Document