Rate of leaf appearance in sugarcane, including a comparison of a range of varieties

1998 ◽  
Vol 25 (7) ◽  
pp. 829 ◽  
Author(s):  
G. D. Bonnett

Leaf appearance rate is a major determinant of canopy establishment, radiation interception and therefore yield. The effect of genotype on leaf appearance rate in sugarcane is largely unknown. Leaf appearance rate was recorded for the mainstems of pot grown sugarcane plants of nine commercial varieties, over 10 months in Townsville, Australia. Bi-phasic linear, polynomial and power-law models were fitted to data describing leaf appearance with thermal time. The bi-phasic model (previously used for sugarcane) had a single large change in phyllochron for which no biological explanation is apparent. Polynomials were less likely to predict leaf appearance accurately outside the range of fitted data. The power-law model gave a continuously increasing thermal time between the appearance of successive leaves (phyllochron) and was used to compare the varieties. An increasing phyllochron for the first 15 leaves could be explained, in part, by the increasing length of lamina each successive leaf had to grow through. However, an explanation for an increasing phyllochron throughout ontogeny has yet to be found. The rate of leaf appearance was significantly different between the varieties. After 5000˚Cd the number of leaves predicted to have appeared ranged from 35 to 46. These variety specific parameters make an important contribution to describing how different varieties produce leaf area.

1999 ◽  
Vol 79 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Y. W. Jame ◽  
H. W. Cutforth ◽  
J. T. Ritchie

The ability to predict leaf appearance would enhance our capability of modeling plant development and the rate of leaf area expansion. Many crop models use the constant thermal time for successive leaf tip appearance (which is often termed a phyllochron) as one model parameter to predict total number of leaves and date of anthesis. However, many researchers have found that phyllochron is not constant, but is dependent upon environment. The problem could be related to the simplified assumption that the daily leaf appearance rate is linearly related to temperature (and hence, phyllochron is constant, independent of temperature). In reality, the temperature response function for the development of a biological system is nonlinear. Thus, we fitted daily leaf appearance rate–temperature relationships obtained from growth room studies for both wheat (Triticum aestivum) and corn (Zea mays L.) to a nonlinear beta function with 0 °C as the base temperature and 42 °C as the upper critical temperature. The function described the relationships very well over the full range of temperatures for plant development. Other variables that are used to describe the duration and rate of leaf appearance, such as calendar days, phyllochron, and thermal rate of leaf appearance, are related to the daily leaf appearance rate, eliminating the need to develop various mathematical functions to independently describe the response of these variables to temperature. Because of the nonlinear nature of the temperature response function, we demonstrated that more accurate determinations of daily leaf appearance rates can be achieved by calculating rates over relatively short periods (i.e., hourly) and summing these to get the mean daily rate. Many environmental factors other than temperature also affect leaf appearance rate. However, once the proper temperature response function for leaf appearance rate is determined, it is much easier to determine when and how other factors are involved to modify the leaf appearance rate under a given environment.Key words: Temperature, leaf appearance rate, phyllochron, wheat, corn, beta function


2020 ◽  
Author(s):  
Priyanka A. Basavaraddi ◽  
Roxana Savin ◽  
Luzie U Wingen ◽  
Stefano Bencivenga ◽  
Alexandra M. Przewieslik-Allen ◽  
...  

AbstractEarliness per se (Eps) genes are reported to be important in fine-tuning flowering time in wheat independently of photoperiod (Ppd) and vernalisation (Vrn). Unlike Ppd and Vrn genes, Eps have relatively small effects and their physiological effect along with chromosomal position are not well defined. We evaluated eight lines derived from crossing Paragon and Baj (late and early flowering respectively), vernalisation insensitive, to study the detailed effects of two newly identified QTLs, Eps-7D and Eps-2B and their interactions under field conditions. The effect of both QTLs were minor but their effect was modulated by the allelic status of the other. While the magnitude of effect of these QTLs on anthesis was similar, they are associated with very different profiles of pre-anthesis development which also depends on their interaction. Eps-7D affected both duration before and after terminal spikelet while not affecting final leaf number (FLN) so Eps-7D-early had a faster rate of leaf appearance. Eps-2B acted more specifically in the early reproductive phase and slightly altered FLN without affecting the leaf appearance rate. Both Eps-7D and 2B affected the spike fertility by altering the rate of floret development and mortality. The effect of the latter was very small but consistent in that the -late allele tended to produced more fertile florets.


1974 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
JR Syme

Three Mexican cultivars of high yield potential were compared in four field sowings with three Australian varieties of similar flowering time. The cultivars had different numbers of leaves on the main stem, associated mainly with differences in rate of leaf appearance rather than duration of leaf production. The Mexican cultivars produced leaves more quickly throughout growth, and this was repeated under glasshouse conditions. A fast rate of leaf appearance was associated with more spikelets and with faster tillering. Analysis of parental, F1, F2 and backcross populations of one cross showed leaf production rate to be under polygenic control with moderate heritability.


1997 ◽  
Vol 77 (1) ◽  
pp. 23-31 ◽  
Author(s):  
G. K. Hotsonyame ◽  
L. A. Hunt

Rate of leaf appearance is a characteristic that can impact on the rate of development of a crop canopy. For wheat (Triticum aestivum L.), it is generally thought to be constant within a sowing date, but to vary among sowing dates. Such variation has been variously attributed to differences in the rate of change of photoperiod, the absolute photoperiod, or the mean air temperature. This study was undertaken to provide further information on the photoperiod and temperature effects on rate of leaf appearance in wheat. Field studies were conducted at Elora, Ontario at five sowing dates under natural and extended (20 h) photoperiod conditions. Two genotypes each of spring and winter wheat were grown under 0 and 150 kg ha−1 nitrogen fertilization. The results indicated that variations in rate of leaf appearance were not due to rate of change in photoperiod or absolute photoperiod at emergence. The change in rate of leaf appearance during a growth cycle was constant when mean air temperature during growth varied in a narrow range (less than 10 °C), but varied when there were wider ranges (over 10 °C) of temperature variation. Rate of leaf appearance was lower for the September seeding, at which time temperatures were around 5 °C, but were quite similar for May, June, July and August seedings even though temperatures ranged from approximately 15 °C (May) to 23 °C (June). The results suggested that the leaf appearance rate–temperature response curve is curvilinear, as found in some growth room studies, and supported work indicating that the phyllochron would depend on the temperature at the time of measurement. Key words: Wheat, photoperiod, temperature, nitrogen, sowing date, leaf appearance rate


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanka A. Basavaraddi ◽  
Roxana Savin ◽  
Luzie U. Wingen ◽  
Stefano Bencivenga ◽  
Alexandra M. Przewieslik-Allen ◽  
...  

AbstractEarliness per se (Eps) genes are reported to be important in fine-tuning flowering time in wheat independently of photoperiod (Ppd) and vernalisation (Vrn). Unlike Ppd and Vrn genes, Eps have relatively small effects and their physiological effect along with chromosomal position are not well defined. We evaluated eight lines derived from crossing two vernalisation insensitive lines, Paragon and Baj (late and early flowering respectively), to study the detailed effects of two newly identified QTLs, Eps-7D and Eps-2B and their interactions under field conditions. The effect of both QTLs was minor and was affected by the allelic status of the other. While the magnitude of effect of these QTLs on anthesis was similar, they are associated with very different profiles of pre-anthesis development which also depends on their interaction. Eps-7D affected both duration before and after terminal spikelet while not affecting final leaf number (FLN) so Eps-7D-early had a faster rate of leaf appearance. Eps-2B acted more specifically in the early reproductive phase and slightly altered FLN without affecting the leaf appearance rate. Both QTLs affected the spike fertility by altering the rate of floret development and mortality. The effect of Eps-2B was very small but consistent in that -late allele tended to produce more fertile florets.


1991 ◽  
Vol 71 (2) ◽  
pp. 405-412 ◽  
Author(s):  
M. J. Morrison ◽  
P. B. E. McVetty

Leaf appearance rate (LAR) is defined as the slope of the regression of leaf number on time of appearance. LARs were calculated for summer rape using both calendar days (CD) and growing degree days (GDD) as measurements of time. The relationship between the number of leaves and GDD or CD was linear. LARs after emergence were 0.022 leaves GDD−1 or 0.247 leaves d−1. Summer rape was grown in growth cabinets set at different mean temperatures to study the effect of air temperature on LAR. The relationship between leaf number and time was linear. When CD were used as a measure of time, LAR increased as mean temperature increased, while the reverse was true when GDD were used to measure time. Cabinet and field LARs were compared at a field mean temperature of 16.5 °C. Cabinet LARs were 0.021 leaves GDD−1 or 0.22 leaves CD−1 which were similar to those calculated in the field. The linear regression equation describing the relationship between LAR (leaves GDD−1) and mean cabinet temperature was used with field-measured daily mean temperatures and GDD to predict the number of leaves for field conditions. When observed number of leaves were plotted against predicted number of leaves, the resulting slope was not significantly different from one, indicating that the model developed in the growth cabinet can be used to predict LAR in the field. Key words: Leaf appearance rate, Brassica napus, phyllochron


2010 ◽  
Vol 90 (4) ◽  
pp. 399-402 ◽  
Author(s):  
H. Wang ◽  
H. Cutforth ◽  
R M DePauw ◽  
T. McCaig ◽  
G. McLeod ◽  
...  

The rate of leaf appearance [LAR (d-1)] was observed for two older (Marquis and Neepawa) and two newer (AC Barrie and AC Elsa) Canada Western Red Spring (CWRS) wheat (Triticum aestivum L.) cultivars grown in a semiarid environment on the Canadian prairies for four years. Although the newer cultivars significantly increased yield LAR did not change when compared with the older cultivars. A simulation model developed by Jame et al. (1998a), and using coefficients for Neepawa determined from a previous study adequately predicted LAR for all four cultivars.Key words: Wheat, leaf appearance rate, temperature, daylength, model


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 810B-810
Author(s):  
D. Scott NeSmith

Different planting dates were used to study the influence of thermal time on leaf appearance rate of four summer squash (Cucurbita pepo L.) cultivars. During the first year (1991), thermal time or growing degree days (GDD) were calculated using a base temperature of 8C and a ceiling temperature of 32C for several planting dates. Leaf numbers per plant were determined every 2 to 3 days. Leaves that were beginning to unfold with a width of 2 cm or greater were included in the counts. The relationship between leaf number and GDD was established from the initial data set, and data from subsequent years were used for model validation. Results indicated that single equation could be used to predict leaf appearance of all four cultivars in response to thermal time. The response of leaf appearance to GDD was curvilinear, with a lag over the first five leaves. After five leaves, the increase in leaf number per plant was linear with increased GDD. Segmented regression with two linear functions also fit the data well. With this approach, leaf 5 was the node, and a separate linear function was used to predict the leaf number below five leaves and above five leaves. The results of this model should prove to be useful in developing a model of leaf area development, and eventually a crop growth model, for summer squash.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1040D-1041
Author(s):  
Gisele Schoene ◽  
Thomas Yeager ◽  
Joe Ritchie

In crop models, it is important to determine the leaf area, because the amount of light interception by leaves influences two very important processes in the plant: photosynthesis and evaporation. Leaf area is dependent on leaf appearance and expansion rates. Leaf appearance rate is driven mainly by temperature. Although the influence of temperature on leaf area development is well known for several agronomic crops, there is no information for woody ornamentals. An experiment was conducted to study the relationship between temperature and leaf appearance of container-grown sweet viburnum. Plants were grown in field conditions in Gainesville, Fla., during two growing periods (Apr. to Aug. 2004 and Aug. 2004 to Jan. 2005). Daily maximum and minimum temperature and leaf appearance were recorded. Linear regression equations were fitted to data and maximum and minimum temperature and leaf appearance were recorded. Linear regression equations were fitted to data and base temperature was assumed to be 8 °C. Thermal time (°C d) was calculated as daily average maximum and minimum air temperature minus the base temperature and was regressed against leaf number. The sum of accumulated thermal time was found to be linearly correlated with leaf number. Phyllochron, which is the thermal time between the appearances of successive leaves, was estimated 51 °C per day. The information presented in this study will be useful in modeling water use of sweet viburnum in response to environmental conditions.


1979 ◽  
Vol 59 (1) ◽  
pp. 7-13 ◽  
Author(s):  
T. LAWRENCE

Progenies from a six-genotype diallel cross in Altai wild ryegrass (Elymus angustus Trin.) were studied to assess the pattern of genetic control for F1 seed weight and a number of seedling and adult plant characters. Variation in F1 seed weight was largely determined by the maternal parent, but some control by the pollen parent was apparent. Gene action was additive, but some nonadditive genetic effects were also present. All of the seedling characters, days to emerge, rate of leaf appearance, rate of tiller appearance and seedling dry matter yield showed additive control which is amenable to direct selection. Diallel analyses indicated that the adult plant characters, days to inflorescence appearance, digestible organic matter, total dry matter yield and total seed yield were controlled by strong additive control which is amenable to direct selection. The seedling characters, rate of leaf appearance, rate of tiller appearance and seedling dry matter yield were interrelated but only rate of tiller appearance was associated with adult plant yield.


Sign in / Sign up

Export Citation Format

Share Document