HarpinPSS-induced peroxidase and lignin accumulation in tobacco during the hypersensitive response

1999 ◽  
Vol 26 (3) ◽  
pp. 265 ◽  
Author(s):  
Wei-Chang Wang ◽  
Zin-Huang Liu

Harpinpss, a pathogenic protein encoded by hrpZ in the hrp gene cluster of Pseudomonas syringae pv. syringae, induces the hypersensitive response (HR) in tobacco (Nicotiana tabacum L. cv. Xanthi). An increase in peroxidase activity, lignin content and salicylic acid was observed during the HR elicited by harpin. The increase in anionic, moderately anionic and cationic peroxidase isozymes is positively correlated with the HR in tobacco. In addition, the increase of the anionic peroxidase isozyme (pI 3.5) is correlated with a rise of the transcript of the encoding gene.

1998 ◽  
Vol 88 (7) ◽  
pp. 692-697 ◽  
Author(s):  
Hyung-il Lee ◽  
Ilya Raskin

Salicylic acid (SA) is a key regulatory component of disease resistance in plants. In tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum cv. Xanthi-nc NN genotype), newly synthesized SA is converted primarily to SA 2-O-β-D-glucoside (SAG) and glucosyl salicylate (GS), a relatively minor metabolite. Similar patterns in the formation of GS and SAG were observed in tobacco inoculated with Pseudomonas syringae pv. phaseolicola, suggesting the accumulation of two glucosylated metabolites is a general phenomenon in tobacco plants. After SA infiltration, GS was synthesized rapidly, reached a maximal level at 6 h, declined, and remained relatively constant for at least 24 h. In contrast, SAG content increased gradually after SA treatment. Our in vitro and in vivo data suggest that a high concentration of free SA triggers transient formation of GS and continuous accumulation of SAG, which is a more stable metabolite of SA. The two distinct SA glucosyltransferases catalyzed the formation of GS and SAG, respectively. The activities of these enzymes were enhanced by TMV or P. syringae pv. phaseolicola inoculation or SA treatment and were found in different fractions of gel filtration chromatography.


2000 ◽  
Vol 13 (3) ◽  
pp. 277-286 ◽  
Author(s):  
I-ching Yu ◽  
Kevin A. Fengler ◽  
Steven J. Clough ◽  
Andrew F. Bent

A mutational study was carried out to isolate Arabidopsis thaliana plants that exhibit full or partial disruption of the RPS2-mediated hypersensitive response (HR) to Pseudomonas syringae that express avrRpt2. Five classes of mutants were identified including mutations at RPS2, dnd mutations causing a “defense, no death” loss-of-HR phenotype, a lesion-mimic mutant that also exhibited an HR¯phenotype, and a number of intermediate or partial-loss-of-HR mutants. Surprisingly, many of these mutants displayed elevated resistance to virulent P. syringae and, in some cases, to Peronospora parasitica. Constitutively elevated levels of pathogenesis-related (PR) gene expression and salicylic acid were also observed. In the lesion-mimic mutant, appearance of elevated resistance was temporally correlated with appearance of lesions. For one of the intermediate lines, resistance was shown to be dependent on elevated levels of salicylic acid. A new locus was identified and named IHR1, after the mutant phenotype of “intermediate HR.” Genetic analysis of the intermediate-HR plant lines was difficult due to uncertainties in distinguishing the partial/intermediate mutant phenotypes from wild type. Despite this difficulty, the intermediate-HR mutants remain of interest because they reveal potential new defense-related loci and because many of these lines exhibit partially elevated disease resistance without dwarfing or other apparent growth defects.


PLoS ONE ◽  
2010 ◽  
Vol 5 (1) ◽  
pp. e8977 ◽  
Author(s):  
Arantza Rico ◽  
Mark H. Bennett ◽  
Silvia Forcat ◽  
Wei E. Huang ◽  
Gail M. Preston

HortScience ◽  
1993 ◽  
Vol 28 (3) ◽  
pp. 218-221 ◽  
Author(s):  
L. Mark Lagrimini ◽  
Jill Vaughn ◽  
W. Alan Erb ◽  
Sally A. Miller

Lignin composition in leaf, fruit, and fruit outer epidermis of transgenic tomato (Lycopersicon esculentum Mill.) plants that overproduce the enzyme tobacco anionic peroxidase (TobAnPOD) was analyzed. This enzyme may catalyze the polymerization of cinnamyl alcohols into lignin in tobacco (Nicotiana tabacum L.); therefore, we predicted that its presence in the transformed tissue would increase lignin levels in healthy and wounded tissue. Lignin levels in healthy plants increased by 20% in leaf, 49% in fruit, and 106% in fruit outer epidermal tissue. Mature-green fruit were aseptically wounded and incubated in darkness for up to 7 days. Soluble phenols in wounded transgenic fruit increased by more than 300% hut changed little in control fruit. As with soluble phenols, lignin content in wounded transformed fruit increased by more than 20-fold hut increased less than two-fold in control fruit. Transgenic seedlings overproducing TobAnPOD were screened for susceptibility to several pathogens, but resistance did not increase. Possible TobAnPOD roles in lignin biosynthesis, phenol metabolism, stress response, and disease resistance are discussed.


2019 ◽  
Vol 12 (3) ◽  
pp. 97-102
Author(s):  
Dânia Vieira Branco Ozorio ◽  
Luiza Rodrigues Redaelli ◽  
Simone Mundstock Jahnke ◽  
Josue Sant Ana

Resumo. Orius insidiosus (Say) (Hemiptera: Anthocoridae), conhecido como um dos principais predadores de pequenos artrópodes como tripes, pulgões, ácaros e pequenas lagartas sendo uma espécie polífaga, que pode ser encontrada em diferentes agroecossistemas.  Este predador é mundialmente usado para controle de populações de pulgões, os quais podem ser vetores de diversas viroses que ocorrem em tabaco. A sobrevivência de predadores pode estar associada à sua capacidade de utilizar pistas químicas provenientes das presas ou das plantas em herbivoria para localizar sítios de alimentação. A emissão de voláteis de defesa indireta de plantas é um dos mecanismos utilizado para atrair inimigos naturais e também pode ser ativado na presença de fitormônios, como metil jasmonato e ácido salicílico. Este trabalho teve como objetivo avaliar as respostas quimiotáxicas de fêmeas de O. insidiosus frente a plantas Nicotiana tabacum L. (Solanaceae) infestadas ou não com Myzus persicae (Sulzer)(Hemiptera:Aphididae), ao odor do pulgão e a plantas aspergidas com ácido salicílico e metil jasmonato. As fêmeas foram avaliadas em olfatômetro de dupla escolha, expostas, individualmente, a cada um dos tratamentos contrastando com o controle em sala climatizada (25 ± 5 ºC, 60 ± 10% UR). As fêmeas somente foram atraídas para plantas quando estavam infestadas (p < 0,001), porém o odor de pulgões, isoladamente, não teve efeito atrativo (p = 0,4386). Plantas aspergidas com fitormônios não atraíram as fêmeas do predador (p > 0,05).  Voláteis produzidos por plantas de tabaco sob a ação da herbivoria de M. persicae atraem O. insidiosus o que evidencia que esta espécie utiliza sinomônios como estratégia de busca e localização de presas.Responses of Orius insidiosus (Say) to Nicotiana tabacum L., Myzus persicae (Sulzer) complex and phytohormonesAbstract. Orius insidiosus (Say) (Hemiptera: Anthocoridae) is one of the major predators of small arthropods such as thrips, aphids, mite, eggs and small caterpillars. It is a polyphagous specie, and can be find in many agrosystems. This predator is used globally to control populations of aphids, which can be vectors of several viruses that occur in tobacco. The predator's survival may be associated with their ability for use chemical cues from the prey or plants damaged by herbivores to locate feeding sites. The emission of volatile chemical compounds is one of the defense mechanisms of plants to attract natural enemies. The emission of volatiles from plants associated with indirect defense is used to attract natural enemies and can also be activated in the presence of phytohormones such as methyl jasmonate and salicylic acid. This work aimed to evaluate the chemotactic responses of O. insidiosus females against plants Nicotiana tabacum L. (Solanaceae) infested and not infested with Myzus persicae (Sulzer) (Hemiptera: Aphididae), odor of aphid and plants sprayed with salicylic acid and methyl jasmonate. The females were evaluated in a double-choice olfactometer, individually, exposed to each of the treatments, contrasting with the control in a labor room (25 ± 5 ºC, 60 ± 10% RH). Females were only attracted to plants when they were infested (p <0.001), but the aphid odor alone had no attractive effect (p = 0.4386). None of the plants with phytohormones attracted females (p> 0.05). Volatile compounds produced by tobacco plants under the action of herbivory of M. persicae attract O. insidiosus indicating that this species uses synomones as search strategy and location of prey.


2021 ◽  
Vol 22 (23) ◽  
pp. 12710
Author(s):  
Zhuzhu Zhang ◽  
Youhua Long ◽  
Xianhui Yin ◽  
Sen Yang

Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5–2.0 kg m−3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.


2004 ◽  
Vol 17 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Chu Zhang ◽  
Annie Tang Gutsche ◽  
Allan D. Shapiro

The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000·avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000·avrRpt2, similar trends were seen. In response to DC3000·avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000·avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.


Sign in / Sign up

Export Citation Format

Share Document