Hormones: what the testis really sees

2004 ◽  
Vol 16 (5) ◽  
pp. 535 ◽  
Author(s):  
B. P. Setchell

Various barriers in the testis may prevent hormones from readily reaching the cells they are supposed to stimulate, especially the hydrophilic hormones from the pituitary. For example, LH must pass through or between the endothelial cells lining the blood vessels to reach the surface of the Leydig cells, and FSH has the additional barrier of the peritubular myoid cells before it reaches the Sertoli cells. The specialised junctions between pairs of Sertoli cells would severely restrict the passage of peptides from blood to the luminal fluid and therefore to the cells inside this barrier, such as the later spermatocytes and spermatids. There is evidence in the literature that radioactively labelled LH does not pass readily into the testis from the blood, and the concentration of native LH in the interstitial extracellular fluid surrounding the Leydig cells in rats is only about one-fifth of that in blood plasma. Furthermore, after injection with LHRH, there are large rises in LH in the blood within 15 min, at which time the Leydig cells have already responded by increasing their content of testosterone, but with no significant change in the concentration of LH in the interstitial extracellular fluid. Either the Leydig cells respond to very small changes in LH, or the testicular endothelial cells in some way mediate the response of the Leydig cells to LH, for which there is now some evidence from co-cultures of endothelial and Leydig cells. The lipophilic steroid hormones, such as testosterone, which are produced by the Leydig cells, have actions within the seminiferous tubules in the testis but also in other parts of the body. They should pass more readily through cells than the hydrophilic peptides; however, the concentration of testosterone in the fluid inside the seminiferous tubules is less than in the interstitial extracellular fluid in the testis, especially after stimulation by LH released after injection of LHRH and despite the presence inside the tubules of high concentrations of an androgen-binding protein. The concentration of testosterone in testicular venous blood does not rise to the same extent as that in the interstitial extracellular fluid, suggesting that there may also be some restriction to movement of the steroid across the endothelium. There is a very poor correlation between the concentrations of testosterone in fluids from the various compartments of the testis and in peripheral blood plasma. Determination of the testosterone concentration in the whole testis is also probably of little predictive value, because the high concentrations of lipid in the Leydig cells would tend to concentrate testosterone there, and hormones inside these cells are unlikely to have any direct effect on other cells in the testis. The best predictor of testosterone concentrations around cells in the testis is the level of testosterone in testicular venous blood, the collection of which for testosterone analysis is a reasonably simple procedure in experimental animals and should be substituted for tissue sampling. There seems to be no simple way of determining the concentrations of peptide hormones in the vicinity of the testicular cells.

2002 ◽  
Vol 175 (2) ◽  
pp. 375-382 ◽  
Author(s):  
BP Setchell ◽  
P Pakarinen ◽  
I Huhtaniemi

The purpose of this study was to assess the concentrations of LH that Leydig cells are exposed to upon in vivo stimulation of steroidogenesis. The concentrations of LH were measured in rats in testicular interstitial extracellular fluid, seminiferous tubular fluid and blood plasma from testicular veins from one testis before and from the other testis of the same rats after an intravenous injection of gonadotrophin-releasing hormone (GnRH) or saline, and compared with the concentrations in blood plasma from a peripheral vein. The concentrations of LH in interstitial fluid surrounding the Leydig cells before the injections were about 10% of the levels in blood plasma, and showed no significant rise at 15 min and a much smaller rise at later times in rats injected with GnRH than those seen in blood plasma from either of the two sources, which were similar. The concentrations of LH in tubular fluid were even lower and showed no change after GnRH. Testosterone concentrations in testicular cells, interstitial fluid and testicular venous blood plasma were significantly increased by 15 min after GnRH, when compared with saline-injected controls, with no change in the levels in tubular fluid. The rise in testosterone concentrations in testicular venous plasma after GnRH was smaller than those in the cells and interstitial fluid. In conclusion, the concentrations of LH reaching the testicular interstitial fluid were only about one-tenth of that measured in the circulation, presumably because the endothelial cells restrict access of the hormone to the interstitial fluid. This indicated that either the Leydig cells are extremely sensitive to LH stimulation or that testicular endothelial cells modulate the action of LH on the Leydig cells.


2014 ◽  
Vol 11 (2) ◽  
pp. 43-48
Author(s):  
D Alimaa ◽  
S Byambatsogt ◽  
TS Enkhbaatar

"Tartu-SHAB" emasculator for unopened castration of male calf, lamb and kids is used to break ductus deferens and blood vessels and damage cremaster muscle after detecting outside the spermatic cord via palpation of scrotal neck skin. Movement of castrated animal becomes slower, hind legs are slightly spread, animal steps on frontal wall of its hind leg hooves and lifts one of hind legs in turn, and superficial, small, painful, differently sized, and warmer swelling appears. Cremaster fascia of testicle tissue castrated animals (at day 30) divides testicle parenchyma into lobules and there are epithelial cells producing spermatozoa at various stages of development in the wall of seminiferous tubules, Sertoli cells and Leydig cells in reticular and soft connective tissues between seminiferous tubules. But at day 60, thickened outer layer of testicle, larger gaps between tubules, structural change of primary and secondary spermatozoa, ceased cellular division cellular division and absence of Leydig cells reveal the process of atrophy. DOI: http://dx.doi.org/10.5564/mjas.v11i2.215 Mongolian Journal of Agricultural Sciences Vol.11(2) 2013 pp.43-48


2018 ◽  
Vol 30 (7) ◽  
pp. 1029
Author(s):  
Marcelo Ferreira ◽  
Aline Soldati ◽  
Sirlene S. S. Rodrigues ◽  
Laércio dos Anjos Benjamin

The insectivorous bat Myotis nigricans is widely distributed throughout the Neotropics, including Brazil, and has a reproductive biology that is affected by climate and food availability. To evaluate the reproductive capacity of this species, morphofunctional parameters of the testes were correlated with environmental variables and the body condition of individuals captured. After bats had been killed, their testes were removed, fixed in Karnovsky’s fluid for 24 h and embedded in resin for evaluation by light microscopy. The mean annual tubulosomatic index (0.58%) and the percentage of seminiferous tubules in the testes (88.96%) were the highest ever recorded for the Order Chiroptera. The percentage of Leydig cells and volume of the cytoplasm of Leydig cells were higher in the rainy than dry season (80.62 ± 3.19% and 573.57 ± 166.95 μm, respectively; mean ± s.d.). Conversely, the percentage of nuclei of the Leydig cells in the dry season (26.17 ± 3.70%; mean ± s.d.) and the total number of Leydig cells (6.38 ± 1.84 × 109; mean ± s.d.) were higher in the dry season. The results of the present study could help in future conservation of these bats because they provide a better understanding of the bats’ reproductive strategies and how the species can adapt to changes.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 311-325 ◽  
Author(s):  
C.E. Patek ◽  
J.B. Kerr ◽  
R.G. Gosden ◽  
K.W. Jones ◽  
K. Hardy ◽  
...  

Adult intraspecific mouse chimaeras, derived by introducing male embryonal stem cells into unsexed host blastocysts, were examined to determine whether gonadal sex was correlated with the sex chromosome composition of particular cell lineages. The fertility of XX in equilibrium XY and XY in equilibrium XY male chimaeras was also compared. The distribution of XX and XY cells in 34 XX in equilibrium XY ovaries, testes and ovotestes was determined by in situ hybridisation using a Y-chromosome-specific probe. Both XX and XY cells were found in all gonadal somatic tissues but Sertoli cells were predominantly XY and granulosa cells predominantly XX. The sex chromosome composition of the tunica albuginea and testicular surface epithelium could not, in general, be fully resolved, owing to diminished hybridisation efficiency in these tissues, but the ovarian surface epithelium (which like the testicular surface epithelium derives from the coelomic epithelium) was predominantly XX. These findings show that the claim that Sertoli cells were exclusively XY, on which some previous models of gonadal sex determination were based, was incorrect, and indicate instead that in the mechanism of Sertoli cell determination there is a step in which XX cells can be recruited. However, it remains to be established whether the sex chromosome constitution of the coelomic epithelium lineage plays a causal role in gonadal sex determination. Male chimaeras with XX in equilibrium XY testes were either sterile or less fertile than chimaeras with testes composed entirely of XY cells. This impaired fertility was associated with the loss of XY germ cells in atrophic seminiferous tubules. Since this progressive lesion was correlated with a high proportion of XX Leydig cells, we suggest that XX Leydig cells are functionally defective, and unable to support spermatogenesis.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1035-1042 ◽  
Author(s):  
Susan Y. Park ◽  
J. Larry Jameson

The embryonic gonad is undifferentiated in males and females until a critical stage when the sex chromosomes dictate its development as a testis or ovary. This binary developmental process provides a unique opportunity to delineate the molecular pathways that lead to distinctly different tissues. The testis comprises three main cell types: Sertoli cells, Leydig cells, and germ cells. The Sertoli cells and germ cells reside in seminiferous tubules where spermatogenesis occurs. The Leydig cells populate the interstitial compartment and produce testosterone. The ovary also comprises three main cell types: granulosa cells, theca cells, and oocytes. The oocytes are surrounded by granulosa and theca cells in follicles that grow and differentiate during characteristic reproductive cycles. In this review, we summarize the molecular pathways that regulate the distinct differentiation of these cell types in the developing testis and ovary. In particular, we focus on the transcription factors that initiate these cascades. Although most of the early insights into the sex determination pathway were based on human mutations, targeted mutagenesis in mouse models has revealed key roles for genes not anticipated to regulate gonadal development. Defining these molecular pathways provides the foundation for understanding this critical developmental event and provides new insight into the causes of gonadal dysgenesis.


1983 ◽  
Vol 103 (3) ◽  
pp. 428-432 ◽  
Author(s):  
A. Belgorosky ◽  
C. Scorticati ◽  
M. A. Rivarola

Abstract. Human sex hormone binding globulin (SHBG) was measured in arterial serum and in serum obtained from different venous territories. In 6 children, SHBG ranged from 44.4 ± 4.8 (mean ± sd) in arterial blood to 55.3 ± 5.3 in the hepatic vein (P < 0.01), while it did not change significantly in renal or peripheral tissue venous blood. In 6 male adults, no significant arteriovenous differences were found either in the peripheral tissues or in the splanchnic circulation. In the spermatic vein of 8 subjects, SHGB was significantly lower (17.1 ± 5.7) than in the arterial blood (22.8 ± 7.5), P < 0.025. The arterio-venous difference found in the splanchnic circulation of children supports the hepatic origin of SHBG, and also suggests extra-hepatic clearance of the binding globulin. Testicular uptake of SHBG might be necessary to regulate delivery of androgens to Sertoli cells in the seminiferous tubules.


Biota ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mahriani Mahriani ◽  
Susantin Fajariyah ◽  
Eva Tyas Utami

Methoxychlor (MXC) is an insecticide (DDT derivates) that has the potential for bioaccumulation in mammal and causes a disruptive effect on the hepar and reproductive system. This study was done to find out the benefits of curcumin as a natural ingredient to overcome the negative impact of Methoxychlor (MXC) on hepar and male reproductive organ of Balb’C mice (Mus musculus L). The study was carried out in a Completely Randomized Design (CRD) Posttest Only Control Group Design used four treatments and six replications. The curcumin treatment after administration of MXC was carried out by gavage with curcumin doses: 0.05; 0,1; and 0.2 mg/g body weight, every day for two weeks, respectively. Histological observations of the liver, and testis was performed using the paraffin method and Hematoxylin Eosin stained. The results showed that MXC exposure caused liver disruption by increasing the number of pycnotic necrotic hepatocytes and hydrophic degeneration hepatocytes. On the male reproductive organ, MXC caused testis impairment by reducing the number of Sertoli cells and Leydig cells, spermatogenic cell counts, and the diameter of seminiferous tubules. The administration of curcumin at doses of 0.1 mg/g bw in mice exposed to methoxychlor can reduce the number of hydrophic degeneration hepatocytes and tend to reduce the number of pycnotic hepatocytes; and also increase the number of Sertoli cells, the number of spermatogenic cells, and the diameter of the seminiferous tubules, and tend to reduce the amount of Leydig cells. Curcumin treatment tends to recover hepar dan testis disruption of mice that were exposed by MXC.


2000 ◽  
Vol 40 (3) ◽  
pp. 206-215 ◽  
Author(s):  
B K Logan ◽  
A W Jones

The concentration of ethanol in blood, breath or urine constitutes important evidence for prosecuting drunk drivers. For various reasons, the reliability of the results of forensic alcohol analysis are often challenged by the defence. One such argument for acquittal concerns the notion that alcohol could be produced naturally in the body, hence the term ‘auto-brewery’ syndrome. Although yeasts such as Candida albicans readily produce ethanol in-vitro, whether this happens to any measurable extent in healthy ambulatory subjects is an open question. Over the years, many determinations of endogenous ethanol have been made, and in a few rare instances (Japanese subjects with very serious yeast infections) an abnormally high ethanol concentration (<80 mg/dl) has been reported. In these atypical individuals, endogenous ethanol appeared to have been produced after they had eaten carbohydrate-rich foods. A particular genetic polymorphism resulting in reduced activity of enzymes involved in hepatic metabolism of ethanol and a negligible first-pass metabolism might explain ethnic differences in rates of endogenous ethanol production and clearance. Other reports of finding abnormally high concentrations of ethanol in body fluids from ostensibly healthy subjects suffer from deficiencies in study design and lack suitable control experiments or used non-specific analytical methods. With reliable gas chromatographic methods of analysis, the concentrations of endogenous ethanol in peripheral venous blood of healthy individuals, as well as those suffering from various metabolic disorders (diabetes, hepatitis, cirrhosis) ranged from 0–0.08 mg/dl. These concentrations are far too low to have any forensic or medical significance. The notion that a motorist's state of intoxication was caused by endogenously produced ethanol lacks merit.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Daniel P. Strange ◽  
Boonyanudh Jiyarom ◽  
Nima Pourhabibi Zarandi ◽  
Xuping Xie ◽  
Coleman Baker ◽  
...  

ABSTRACT Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in its ability to be sexually transmitted. Persistent ZIKV infection in the testes, which are immune privileged organs, long after peripheral clearance suggests involvement of immunosuppressive pathways; however, the underlying mechanisms remain undetermined. We recently demonstrated that ZIKV infects human Sertoli cells (SC), the major cell type of the seminiferous epithelium responsible for maintaining the immune privileged compartment of seminiferous tubules. Recent reports have identified the TAM (Tyro3, Axl, Mer) receptor tyrosine kinase Axl as an entry receptor and/or immune modulator for ZIKV in a cell type-specific manner. Interestingly, the seminiferous epithelium exhibits high basal expression of the Axl receptor where it is involved in clearance of apoptotic germ cells and immunosuppression. Here, we show that Axl was highly expressed in SC compared to Leydig cells (LC) that correlated with robust ZIKV infection of SC, but not LC. Further, neutralization of Axl receptor and its ligand Gas6 strongly attenuated virus entry in SC. However, inhibition of Axl kinase did not affect ZIKV entry but instead led to decreased protein levels of suppressor of cytokine signaling 1 (SOCS1) and SOCS3, increased expression of interferon-stimulated genes (ISGs), and reduced ZIKV replication. Similarly, treatment of multicellular human testicular organoids with an Axl kinase inhibitor attenuated ZIKV replication and increased ISG expression. Together, our data demonstrate that Axl promotes ZIKV entry and negatively regulates the antiviral state of SC to augment ZIKV infection of the testes and provides new insights into testis antiviral immunity and ZIKV persistence. IMPORTANCE Recent Zika virus (ZIKV) outbreaks have identified sexual transmission as a new route of disease spread not reported for other flaviviruses. ZIKV crosses the blood-testis barrier and establishes infection in seminiferous tubules, the site for spermatozoa development. Currently, there are no therapies to treat ZIKV infection, and the immune mechanisms underlying testicular persistence are unclear. We found that multiple human testicular cell types, except Leydig cells, support ZIKV infection. Axl receptor, which plays a pivotal role in maintaining the immunosuppressive milieu of the testis, is highly expressed in Sertoli cells and augments ZIKV infection by promoting virus entry and negatively regulating the antiviral state. By using testicular organoids, we further describe the antiviral role of Axl inhibition. The significance of our research lies in defining cross talk between Axl and type I interferon signaling as an essential mechanism of immune control that can inform therapeutic efforts to clear ZIKV from the testis.


Sign in / Sign up

Export Citation Format

Share Document