Dietary protein intake during the oestrous cycle does not alter the ovulation rate in gilts

2004 ◽  
Vol 16 (6) ◽  
pp. 589 ◽  
Author(s):  
César A. Mejia-Guadarrama ◽  
Armelle Prunier ◽  
Hélène Quesnel

The effect of protein intake on ovulation rate was investigated in cross-bred gilts. On Day 14 of the third oestrous cycle, luteolysis was induced by injection of an analogue of prostaglandin F2α. The ovulation rate was recorded when gilts were killed on Day 27. In the first experiment, nutritional treatment was applied from Day 14 to Day 27. Gilts were fed diets providing the same amount of digestible energy, but containing either a low, medium or high amount of dietary protein. Protein restriction linearly decreased plasma concentrations of urea (P < 0.001) and had no effect on plasma concentrations of insulin-like growth factor-I and leptin measured at Day 27 (P > 0.1). Protein restriction did not influence ovulation rate (mean (± s.e.m.) 17.0 ± 0.4; P > 0.1). In the second experiment, the nutritional treatment was applied from Day 5 until Day 27. Gilts received the same amount of digestible energy and either a low or a high amount of protein, as in Experiment 1. A third group of gilts received the high amount of protein and also more digestible energy. The ovulation rate did not differ between the three groups of gilts. These data indicate no effect of short-term dietary protein restriction on ovulation rate in cyclic gilts.

Author(s):  
Sean Paul Kilroe ◽  
Jonathan Fulford ◽  
Sarah Jackman ◽  
Andrew Holwerda ◽  
Annemie Gijsen ◽  
...  

ABSTRACT Background Short-term (&lt;1 wk) muscle disuse lowers daily myofibrillar protein synthesis (MyoPS) rates resulting in muscle mass loss. The understanding of how daily dietary protein intake influences such muscle deconditioning requires further investigation. Objectives To assess the influence of graded dietary protein intakes on daily MyoPS rates and the loss of muscle mass during 3 d of disuse. Methods Thirty-three healthy young men (aged 22 ± 1 y; BMI = 23 ± 1 kg/m2) initially consumed the same standardized diet for 5 d, providing 1.6 g protein/kg body mass/d. Thereafter, participants underwent a 3-d period of unilateral leg immobilization during which they were randomly assigned to 1 of 3 eucaloric diets containing relatively high, low, or no protein (HIGH: 1.6, LOW: 0.5, NO: 0.15 g protein/kg/d; n = 11 per group). One day prior to immobilization participants ingested 400 mL deuterated water (D2O) with 50-mL doses consumed daily thereafter. Prior to and immediately after immobilization upper leg bilateral MRI scans and vastus lateralis muscle biopsies were performed to measure quadriceps muscle volume and daily MyoPS rates, respectively. Results Quadriceps muscle volume of the control legs remained unchanged throughout the experiment (P &gt; 0.05). Immobilization led to 2.3 ± 0.4%, 2.7 ± 0.2%, and 2.0 ± 0.4% decreases in quadriceps muscle volume (P &lt; 0.05) of the immobilized leg in the HIGH, LOW, and NO groups (P &lt; 0.05), respectively, with no significant differences between groups (P &gt; 0.05). D2O ingestion resulted in comparable plasma free [2H]-alanine enrichments during immobilization (∼2.5 mole percentage excess) across groups (P &gt; 0.05). Daily MyoPS rates during immobilization were 30 ± 2% (HIGH), 26 ± 3% (LOW), and 27 ± 2% (NO) lower in the immobilized compared with the control leg, with no significant differences between groups (P &gt; 0.05). Conclusions Three days of muscle disuse induces considerable declines in muscle mass and daily MyoPS rates. However, daily protein intake does not modulate any of these muscle deconditioning responses. Clinical trial registry number: NCT03797781


1984 ◽  
Vol 64 (5) ◽  
pp. 185-186 ◽  
Author(s):  
J. H. BURTON ◽  
A. A. HOSEIN ◽  
I. MCMILLAN ◽  
D. G. GRIEVE ◽  
B. N. WILKIE

Protein intake restricted to 66% of NRC requirement during the last trimester of pregnancy in first calf Holstein heifers resulted in a significant reduction in the absorption of IgG1, IgG2, IgM and IgA by calves fed their dam's colostrum. No treatment effect on colostral Ig levels was noted. Key words: Protein restriction, immunoglobulin absorption, colostrum, calves


1996 ◽  
Vol 270 (1) ◽  
pp. E148-E157 ◽  
Author(s):  
I. G. Brodsky ◽  
J. T. Devlin

We studied subjects with insulin-dependent diabetes mellitus (IDDM) and controls by administering primed continuous infusions of L-[1-13C,15N)]leucine and L-[2,3-13C2]alanine to measure whole body and forearm metabolism of these amino acids during ample protein intake and again after 4 wk of moderately restricted protein intake. Decreased rates of whole body protein degradation, leucine transamination, leucine oxidation, and increased forearm alanine release produced by dietary protein restriction occurred equivalently in IDDM subjects under short-term tightly managed glycemia and in controls. Dietary protein restriction did not affect whole body alanine appearance or forearm leucine appearance, disposal, or balance in IDDM subjects or controls. IDDM subjects differed from controls only in that normal forearm leucine balance was maintained at higher rates of leucine appearance and disposal. We conclude that IDDM subjects adapt normally to dietary protein restriction. Undernutrition during moderate protein deprivation in these patients likely occurs during episodes of poor glycemic control.


2017 ◽  
Vol 313 (1) ◽  
pp. F116-F125 ◽  
Author(s):  
Hyun-Wook Lee ◽  
Gunars Osis ◽  
Mary E. Handlogten ◽  
Jill W. Verlander ◽  
I. David Weiner

Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion changes in parallel during changes in dietary protein intake. Dietary protein restriction decreases endogenous acid production and decreases urinary ammonia excretion, a major component of net acid excretion. Glutamine synthetase (GS) catalyzes the reaction of [Formula: see text] and glutamate, which regenerates the essential amino acid glutamine and decreases net ammonia generation. Because renal proximal tubule GS expression increases during dietary protein restriction, this could contribute to the decreased ammonia excretion. The purpose of the current study was to determine the role of proximal tubule GS in the renal response to protein restriction. We generated mice with proximal tubule-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Cre-negative (Control) and PT-GS-KO mice in metabolic cages were provided 20% protein diet for 2 days and were then changed to low-protein (6%) diet for the next 7 days. Additional PT-GS-KO mice were maintained on 20% protein diet. Dietary protein restriction caused a rapid decrease in urinary ammonia excretion in both genotypes, but PT-GS-KO blunted this adaptive response significantly. This occurred despite no significant genotype-dependent differences in urinary pH or in serum electrolytes. There were no significant differences between Control and PT-GS-KO mice in expression of multiple other proteins involved in renal ammonia handling. We conclude that proximal tubule GS expression is necessary for the appropriate decrease in ammonia excretion during dietary protein restriction.


2021 ◽  
Author(s):  
Krystle Kalafut ◽  
Sarah J Mitchell ◽  
Michael R MacArthur ◽  
James R Mitchell

There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and extends lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. 20% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD diets both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF and KD differed with respect to insulin tolerance and hepatic insulin sensitivity, which were increased in PF-fed mice and impaired in KD-fed mice relative to controls. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing at least 5% protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD diets and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets occur via distinct underlying mechanisms.


1997 ◽  
Vol 1997 ◽  
pp. 12-12
Author(s):  
M. Crisol ◽  
S.A. Edwards ◽  
P.R. English

Selection for carcass leanness in pig breeding schemes has promoted lean tissue growth rate whilst reducing body fat stores and appetite. Dietary protein restriction has been proposed as a way to enhance body fat reserves in the breeding animal. However, protein restriction during gilt rearing has been shown to adversely affect reproductive performance (Cia et al., 1996). The aim of this study was to test the effect of short term elevation of dietary protein prior to ovulation in gilts reared on restricted protein, to determine whether short term improvement in metabolic state could reverse these detrimental effects.


2016 ◽  
Vol 53 (4) ◽  
pp. 380
Author(s):  
Sarita Devi ◽  
Tinku Thomas ◽  
Pratibha Dwarkanath ◽  
Annamma Thomas ◽  
C. N. Sheela ◽  
...  

Low intakes of quality dietary protein could affect the methionine cycle during pregnancy, which is important for fetal growth and epigenetic regulations. Since low quality protein intake is prevalent in India, it is important to define biomarkers of the low protein intake, specifically of methyl cycle homeostasis. A secondary analysis of data was performed, from a randomized intervention trial with 500 ml milk/d on south Indian pregnant women, to examine the association of dietary protein intake with concentrations of specific amino acids (methionine, glycine and serine). The subjects also underwent isotopic infusions (n = 52) for the measurement of amino acid kinetics. Dietary intakes were measured each week by multiple 24 h recall until delivery. The plasma concentrations of amino acids (methionine, serine and glycine) were compared with kinetics of methionine i.e. transmethylation, remethylation and transulfuration (TM, RM, TS) and serine to glycine conversion rates, as measured by stable isotope labeled amino acid infusion. Dietary protein intake in the 3<sup>rd</sup> trimester correlated positively with intakes of milk and milk based food products (ρ=0.52, p&lt;0.001) and methionine (ρ=0.97, p&lt;0.001) and with gestational weight gain (GWG, ρ=0.32, p=0.044). While the methionine concentration did not correlate with methyl cycle flux parameters (TM, RM and TS), the plasma concentrations of conditionally essential serine and glycine were positively correlated with their respective flux rate and with RM, TM and TS rates. Further, glycine concentrations specifically correlated positively with serine to glycine conversion rates (ρ=0.32, p=0.027). Dietary protein and methionine supply are important for the conservation of methionine during pregnancy. This had an effect on GWG, but not on birth weight, though this may have been due to the relatively small sample size. The plasma concentration of glycine was correlated with the serine-glycine conversion, which affords methyl groups for the body and supplies these when dietary protein/methionine is in poor supply. This indicates that itcan act as a biomarker of the serine-glycine conversion flux rate, which increases in the presence of a poor protein supply. In general, the plasma concentrations of these conditionally essential amino acids may be biomarkers of the methyl cycle during pregnancy, but this needs to be tested in a larger sample.


1988 ◽  
Vol 255 (4) ◽  
pp. F647-F655
Author(s):  
P. Cortes ◽  
F. Dumler ◽  
D. L. Paielli ◽  
N. W. Levin

The biosynthesis of uridine 5'-triphosphate (UTP), uridine 5'-diphosphohexoses, and 5'-diphosphohexosamines (UDP-sugars) was studied in isolated rat glomeruli 48 h after streptozotocin-induced diabetes. Compared with control, diabetic glomeruli demonstrated an increase in the following: exogenous orotate utilization, orotate incorporation into UTP and UDP-sugars, UTP accretion rate, and UDP-sugar pool size. Since these phenomena were not associated with enhanced biosynthesis of orotate de novo, the increased glomerular UDP-sugar bioavailability in diabetes is due to enhanced utilization of exogenous orotate. Plasma concentrations of orotate and uridine were measured in control, sham operated, and unilaterally nephrectomized rats receiving 5, 20, or 60% protein diets. The concentration of pyrimidine precursors correlated directly with protein intake, with doubling at the 60% dietary protein level. In conclusion, glomerular uracil ribonucleotide biosynthesis may be modulated by the quantity of dietary protein. Because UDP-sugars are necessary for basement membrane material formation, an increase in their bioavailability may be part of the metabolic change responsible for diabetic glomerulosclerosis. Diets with high protein content could augment this metabolic alteration.


Sign in / Sign up

Export Citation Format

Share Document