Sealed culture system for supporting mouse preimplantation embryo development in vitro

2020 ◽  
Vol 32 (9) ◽  
pp. 879
Author(s):  
Jie Liu ◽  
Zhao Wang ◽  
Zhen Gao ◽  
Hui Zhang ◽  
Jianfeng Gu ◽  
...  

This study investigated the possibility of a sealed culture system in polymerase chain reaction (PCR) tubes to maintain embryo development. The embryo density that could support the development of 2-cell stage mouse embryos to the hatching stage was determined. At an embryo density of 1:2 (100 embryos cultured in 200μL CZB medium that had been pretreated with a reference gas containing 5% O2), the developmental rate was higher and fewer embryos exhibited reactive oxygen species- or hypoxia-induced injury compared with other sealed culture groups. Expression of growth factors (insulin-like growth factor (IGF) 1, IGF2, epidermal growth factor and transforming growth factor-α) and their receptors was evaluated, with similar expression patterns seen for embryos in sealed culture (5% O2, embryo density of 1:2) compared with the control group (embryos cultured in microdrops and placed in a 37°C, 5% CO2 water-jacketed incubator; P>0.05). After transfer of blastocysts generated by the sealed culture into recipients, there were no obvious differences in the rate of normal live pups births between the sealed culture and control groups (P>0.05). Thus, the sealed embryo culture system in PCR tubes is feasible for use in situations which cannot use a traditional incubator, such as in space and during the transport of embryos.

Zygote ◽  
2018 ◽  
Vol 26 (3) ◽  
pp. 232-241 ◽  
Author(s):  
Antonio D. Barrera ◽  
Elina V. García ◽  
Dora C. Miceli

SummaryDuring preimplantation development, embryos are exposed and have the capacity to respond to different growth factors present in the maternal environment. Among these factors, transforming growth factor β1 (TGF-β1) is a well known modulator of embryonic growth and development. However, its action during the first stages of development, when the embryo transits through the oviduct, has not been yet elucidated. The objective of the present study was to examine the effect of early exposure to exogenous TGF-β1 on embryo development and expression of pluripotency (OCT4, NANOG) and DNA methylation (DNMT1, DNMT3A, DNMT3B) genes in bovine embryos produced in vitro. First, gene expression analysis of TGF-β receptors confirmed a stage-specific expression pattern, showing greater mRNA abundance of TGFBR1 and TGFBR2 from the 2- to the 8-cell stage, before embryonic genome activation. Second, embryo culture for the first 48 h in serum-free CR1aa medium supplemented with 50 or 100 ng/ml recombinant TGF-β1 did not affect the cleavage and blastocyst rate (days 7 and 8). However, RT-qPCR analysis showed a significant increase in the relative abundance of NANOG and DNMT3A in the 8-cell stage embryos and expanded blastocysts (day 8) derived from TGF-β1 treated embryos. These results suggest an early action of exogenous TGF-β1 on the bovine embryo, highlighting the importance to provide a more comprehensive understanding of the role of TGF-β signalling during early embryogenesis.


2012 ◽  
Vol 79 (3) ◽  
pp. 310-317 ◽  
Author(s):  
Geng Li ◽  
Karam Khateeb ◽  
Erin Schaeffer ◽  
Bao Zhang ◽  
Hasan Khatib

One of the main factors affecting cattle fertility is pre-implantation development of the bovine embryo, which is a complex process regulated by various signal-transduction pathways. The transforming growth factor-β (TGF-β) signalling system, which is responsible for many biological processes including cell proliferation, differentiation and apoptosis, also is involved in embryo development. We hypothesized that altered expression of TGF-β genes in pre-implantation bovine embryos is associated with morphological abnormalities of these embryos. To test this hypothesis, we produced embryos in vitro and classified them at the blastocyst stage as either normally developed blastocysts or degenerates (growth-arrested embryos). The expression patterns of 25 genes from the TGF-β pathway were assessed using quantitative real time PCR. Ten genes showed differential expression between the two embryo groups, four genes displayed similar expressional profiles, and 11 genes had no detectable expression. An altered expression profile was statistically significant for 10 of the 14 expressed genes, and all were up-regulated in degenerate embryos vs. blastocysts. Furthermore, genomic association analysis of the cows from which embryos were produced revealed a significant association of ID3 and BMP4 polymorphisms—two of the most significant differentially expressed genes—with fertilization rate and blastocyst rate, respectively. Taken together, we conclude that TGF-β pathway genes, especially BMP4 and ID3 play a vital function in the regulation of pre-implantation embryo development at both embryo and maternal levels. Hence, these genes may be suitable as genetic markers for embryo development and fertility in cattle.


2015 ◽  
Vol 27 (1) ◽  
pp. 245
Author(s):  
A. Sato ◽  
B. Sarentonglaga ◽  
K. Ogata ◽  
M. Yamaguchi ◽  
A. Hara ◽  
...  

Although in vitro maturation (IVM) of oocytes has been successfully established for many species, the efficiency of IVM in canine oocytes is still very low. As growth factors have been shown to promote oocyte maturation in some species, we investigated whether use of transforming growth factor α (TGF-a) and insulin-like growth factor 1 (IGF-1) might overcome the difficulties of achieving meiotic maturation in cultured canine cumulus-oocyte complexes (COC). Ovaries were obtained from bitches at 6 months to 7 years of age by ovariohysterectomy and were sliced repeatedly to release COC. In the first experiment, the COC were cultured at 38.8°C for 48 h in 5% CO2 in air in medium 199 supplemented with either TGF-a (0, 1, 10, or 100 ng mL–1) or IGF-1 (0, 0.5, 5, 10, or 50 µg mL–1). In the second experiment, the synergistic effect of TGF-a and IGF-1 was investigated by culturing COC in medium 199 supplemented with both TGF-a (0, 1, 10, or 100 ng mL–1) and IGF-1 (0, 0.5, 5, 10, or 50 µg mL–1). At the end of the culture period, the oocytes were denuded of cumulus cells by pipetting with a fine bore glass pipette; the denuded oocytes were then fixed in Carnoy's solution and stained with Hoechst 33342. The nuclear configuration and chromatin morphology of the oocytes were evaluated under confocal laser scanning microscopy. The cells were assigned to 1 of the following meiotic stages: germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), or metaphase II (MII). Data were analysed by ANOVA with Fisher's PLSD test. In experiment 1, no significant difference were observed in the rates of cells maturing to the MI and MII stages, but that in the 10 ng mL–1 of TGF-a group (56.3%) were larger than in the other treatment groups (38.8–51.0%). The frequencies of MII stage cells in the 5, 10, and 50 µg mL–1 of IGF-1 treatment groups (9.8, 13.3, and 12.2%, respectively) were significantly higher than in the 0.5 µg mL–1 of IGF-1 group and the control group (5.3 and 2.2%, respectively). In experiment 2, the frequency of MI and MII cells in the control, 1 ng mL–1 of TGF-a plus 0.5 µg mL–1 of IGF-1, 10 ng mL–1 of TGF-a plus 5 µg mL–1 of IGF-1, 10 ng mL–1 of TGF-a plus 10 µg mL–1 of IGF-1, and 100 ng mL–1 of TGF-a plus 50 µg mL–1 of IGF-1 group were 44.1, 36.1, 63.5, 70.8, and 50.8%, respectively. The frequency of MII cells in the control group and the same treatment groups were 2.8, 7.2, 10.4, 15.3, and 10.8%, respectively. Both frequencies in the 10 ng mL–1 of TGF-a plus 10 µg mL–1 of IGF-1 group were significantly higher than in the control group. The TGF-a may act in a paracrine fashion on the surrounding granulosa cells, and IGF-1 may play multiple roles in cellular metabolism, proliferation, growth, and differentiation in canine oocyte maturation, as has been reported for many other species. In conclusion, these results demonstrate that a synergistic effect between TGF-a and IGF-1 produces an increased rate of in vitro maturation to the MI and MII stages in canine oocytes.


2019 ◽  
Vol 40 (3) ◽  
pp. 639-655 ◽  
Author(s):  
Xuejiao Dai ◽  
Jie Chen ◽  
Fei Xu ◽  
Jingyan Zhao ◽  
Wei Cai ◽  
...  

Transforming growth factor α (TGF-α) has been reported to play important roles in neurogenesis and angiogenesis in the injured brain. The present study characterizes a novel role for TGFα in oligodendrocyte lineage cell survival and white matter integrity after ischemic stroke. Three days after transient (60 min) middle cerebral artery occlusion (tMCAO), TGFα expression was significantly increased in microglia/macrophages and neurons. Expression of the receptor of TGFα—epidermal growth factor receptor (EGFR)—was increased in glial cells after ischemia, including in oligodendrocyte lineage cells. TGFα knockout enlarged brain infarct volumes and exacerbated cell death in oligodendrocyte precursor cells (OPCs) and oligodendrocytes three days after tMCAO. TGFα-deficient mice displayed long-term exacerbation of sensorimotor deficits after tMCAO, and these functional impairments were accompanied by loss of white matter integrity and impaired oligodendrocyte replacement. In vitro studies confirmed that 5 or 10 ng/mL TGFα directly protected OPCs and oligodendrocytes against oxygen and glucose deprivation (OGD)-induced cell death, but exerted no effects on OPC differentiation. Further studies identified STAT3 as a key transcription factor mediating the effects of TGFα on OPCs and oligodendrocytes. In conclusion, TGFα provides potent oligodendrocyte protection against cerebral ischemia, thereby maintaining white matter integrity and improving neurological recovery after stroke.


2007 ◽  
Vol 19 (1) ◽  
pp. 273 ◽  
Author(s):  
A. Sugulle ◽  
S. Katakawa ◽  
S. Yamamoto ◽  
S. Oomori ◽  
I. Itou ◽  
...  

The morphological identification of immature oocytes has commonly been used to select the bovine oocytes for IVF. However, <30% of the recovered oocytes reach the blastocyst stage after fertilization, and this is probably due to the quality of the oocytes at the beginning of maturation. The brilliant cresyl blue (BCB) stain determines the activity of glucose-6-phosphate dehydrogenase, an enzyme synthesized in growing oocytes. The aim of this study was to evaluate the effect of the BCB stain on the selection of bovine oocytes and on the subsequent embryo development for in vitro production (IVP). Cumulus–oocyte complexes (COCs) were collected by the aspiration of 2- to 6-mm follicles. A total of 559 oocytes were divided into 2 groups: (1) a control group, immediately cultured, and (2) a BCB-incubated group. After 90 min of BCB staining (Pujol et al. 2004 Theriogenology 61, 735–744), the oocytes were divided into oocytes with blue cytoplasm (BCB+) and oocytes without blue cytoplasm (BCB−). The COCs were matured for 20 h in TCM-199 supplemented with 5% calf serum (CS) and 0.02 mg mL−1 FSH at 38.5°C under an atmosphere of 5% CO2 in air. The matured COCs were inseminated with 5 × 106 sperm mL−1. After 18 h of gamete co-culture, the presumed zygotes were cultured in CR1aa supplemented with 5% CS for 9 days at 38.5°C under an atmosphere of 5% CO2, 5% O2, and 90% N2. Embryonic development was evaluated at 48 h after IVF (proportion of ≥5-cell stage, the total cleavage rates) and on Days 7 to 9 (blastocyst rate). The experiment was replicated 5 times, and the data were analyzed by a chi-square test and ANOVA. The results are presented in Table 1. The proportion of embryos with ≥5-cell stage was significantly higher (P < 0.01) in the BCB+ group than in the BCB− group, but not in the control group. The total cleavage rate for the BCB+ embryos was significantly higher than that of either the BCB− or the control group (P < 0.01). There were also significant differences (P < 0.01) in the blastocyst development between the BCB+ and BCB− embryos and between the BCB− and the control embryos (P < 0.05). This result showed that the selection of bovine oocytes by BCB staining before in vitro maturation may be useful for selecting oocytes that are developmentally competent up to Day 9 for IVP. Table 1.Effect of selection of oocytes by brilliant cresyl blue (BCB) staining on the subsequent embryo development of in vitro-matured/in vitro-fertilized bovine embryos


2008 ◽  
Vol 20 (9) ◽  
pp. 57
Author(s):  
Y. Li ◽  
M. L. Day ◽  
C. O.'Neill

Platelet activating factor (paf) is an autocrine survival factor for preimplantation embryo. Binding of paf to its receptor activates PI3kinase, causing an IP3-dependent release of Ca2+ from intracellular stores as well as activation of Ca2+ influx via a dihydropyridine-sensitive Ca2+ channel. These actions result in the generation of a defined intracellular calcium ([Ca2+]i) transient in the 2-cell embryo[1]. By using combined whole-cell patch-clamp and real-time [Ca2+]i analyses, we have shown that paf also induces a concomitant hyperpolarisation of the membrane potential in 2-cell embryos, accompanied by an increased net outward ion current. Both the membrane hyperpolarisation and outward current were dependent upon the occurrence of the paf-induced [Ca2+]i transient[2]. The aim of this study was to investigate the characteristics of the paf-induced outward current in 2-cell embryos and to assess whether it has a role in normal mouse preimplantation development. We show that: (1) removal of extracellular anions or treatment with niflumic acid (NFA, 100 μM, a Ca2+-activated Cl- channel blocker) prevented activation of the outward current by paf but had no effect on the paf-induced [Ca2+]i transient; and (2) The culture of embryos with NFA (100 μM) from the 1-cell to late 2-cell stage significantly reduced their development to the blastocyst stage (P < 0.001), but treatment with NFA from the late 2-cell stage had no effect on development. The results show that paf induces an increase in [Ca2+]i which in turn activates a Ca2+-activated Cl- channel. The activity of this NFA-sensitive channel during the zygote to 2-cell stage is required for normal embryo development. (1) C. O’Neill (2008) The potential roles of embryotrophic ligands in preimplantation embryo development. Hum Reprod Update 14:275–288. (2) Y. Li, M.L. Day & C. O’Neill (2007) Autocrine activation of ions currents in the two-cell mouse embryo. Exp Cell Res. 313:2785–2794.


Sign in / Sign up

Export Citation Format

Share Document