Intragonadal regulation of immune system functions

1990 ◽  
Vol 2 (3) ◽  
pp. 263 ◽  
Author(s):  
MP Hedger ◽  
JX Qin ◽  
DM Robertson ◽  
Kretser DM de

Immune responses within the mammalian gonads, and in particular the testis, are deficient in spite of adequate lymphatic drainage and the presence of lymphocytes and MHC II+ macrophages. There is considerable evidence from in vivo and in vitro studies that this 'suppression' of the immune system may be due, at least in part, to localized inhibition or regulation of normal lymphocyte and/or macrophage functions within the gonads. In the testis, both steroidal and non-steroidal products of the Leydig cells, including androgens, endorphins, and inhibin-related proteins, have been implicated in mediating this activity. In turn, a number of immune cell cytokines affect steroidogenic cell function in vitro. The studies described in this paper indicated that [3H]-thymidine incorporation by adult rat thymocytes in vitro was inhibited by conditioned medium collected from short-term incubations of Percoll-purified adult rat Leydig cells, but stimulated by testicular interstitial fluid and by conditioned medium collected from short-term incubations of adult rat seminiferous tubules. The factors responsible for these effects on thymocyte function appeared to be of large molecular weight, as they were retained by ultrafiltration membranes with exclusion limits of 10,000 or 30,000 daltons. It is hypothesized that an 'immunosuppressive' mechanism, principally mediated by non-steroidal factors secreted by the steroidogenic cells of the gonadal interstitial tissue, exists within the gonads in order to prevent activation of the immune system by germ cell antigens and growth factors associated with germ cell proliferation and differentiation. This mechanism probably acts in parallel with normal antigen-specific tolerance mechanisms operating at the gonadal level. As immune responses to germ cells are believed to be a significant causative factor in infertility, particularly in men, this represents an important area for further study.

1994 ◽  
Vol 6 (6) ◽  
pp. 693 ◽  
Author(s):  
JR McFarlane ◽  
Kretser DM de ◽  
GP Risbridger

The effect of conditioned medium from rat seminiferous tubules (at Stages VII-VIII and Stages IX-VI) cultured with or without follicle-stimulating hormone (FSH) on the production of testosterone and immunoactive inhibin by Leydig cells was examined. Low doses of conditioned medium from unstimulated tubules at Stages VII-VIII significantly (P < 0.05) increased the mean testosterone production to greater than 31 +/- 11% over that achieved with luteinizing hormone (LH) alone. At the highest dose, the conditioned medium significantly inhibited (P < 0.05) LH-stimulated testosterone production by 13 +/- 7%. Low doses of conditioned medium from unstimulated tubules at Stages IX-VI increased the mean testosterone production to 22 +/- 10%, whereas at higher doses, a significant reversal in the stimulation occurred although not to the same extent as that found with medium from tubules at Stages VII-VIII. Conditioned medium from FSH-stimulated tubules at Stages VII-VIII and Stages IX-VI, significantly increased testosterone production to 39 +/- 7% and 31 +/- 13% respectively. Immunoactive inhibin production by the Leydig cells remained unaffected by exposure to conditioned medium from FSH stimulated and unstimulated tubules at Stages VII-VIII and Stages IX-VI. The data demonstrate that tubule culture medium contains FSH-modulated activities which can specifically stimulate and inhibit testosterone synthesis by adult rat Leydig cells in vitro and therefore explains the contradictory reports in the literature.


1987 ◽  
Vol 112 (2) ◽  
pp. 311-NP ◽  
Author(s):  
H. D. Nicholson ◽  
R. T. S. Worley ◽  
S. E. F. Guldenaar ◽  
B. T. Pickering

ABSTRACT An oxytocin-like peptide is present in the interstitial cells of the testis, and testicular concentrations of oxytocin have been shown to increase seminiferous tubule movements in vitro. We have used the drug ethan-1,2-dimethanesulphonate (EDS), which depletes the Leydig cell population of the adult rat testis, to examine further the relationships between the Leydig cell, testicular oxytocin and tubular movements. Adult rats were injected i.p. with a single dose of EDS (75 mg/kg) or of vehicle (25% dimethyl sulphoxide). Histological study 3 and 10 days after treatment with EDS showed a reduction in the number of interstitial cells, and levels of oxytocin immunoreactivity were undetectable by radioimmunoassay. Immunostaining revealed very few oxytocin-reactive cells. Spontaneous contractile activity of the seminiferous tubules in vitro was also dramatically reduced, but could be restored by the addition of oxytocin to the medium. Four weeks after EDS treatment, the interstitial cells were similar to those in the control animals both in number and in immunostaining; immunoassayable oxytocin was present and tubular movements were normal. The EDS effect, seen at 3 and 10 days, was not altered by daily treatment with testosterone. However, repopulation of the testes with oxytocin-immunoreactive cells was not seen until 6 weeks in the testosterone-treated animals. We suggest that the Leydig cells are the main source of oxytocin immunoreactivity in the testis and that this oxytocin is involved in modulating seminiferous tubule movements and the resultant sperm transport. The results also imply that testosterone does not play a major role in controlling tubular activity in the mature rat. J. Endocr. (1987) 112, 311–316


1998 ◽  
Vol 9 (2) ◽  
pp. 421-435 ◽  
Author(s):  
Laura A. Rudolph-Owen ◽  
Paul Cannon ◽  
Lynn M. Matrisian

To examine the role of matrilysin (MAT), an epithelial cell-specific matrix metalloproteinase, in the normal development and function of reproductive tissues, we generated transgenic animals that overexpress MAT in several reproductive organs. Three distinct forms of human MAT (wild-type, active, and inactive) were placed under the control of the murine mammary tumor virus promoter/enhancer. Although wild-type, active, and inactive forms of the human MAT protein could be produced in an in vitro culture system, mutations of the MAT cDNA significantly decreased the efficiency with which the MAT protein was produced in vivo. Therefore, animals carrying the wild-type MAT transgene that expressed high levels of human MAT in vivo were further examined. Mammary glands from female transgenic animals were morphologically normal throughout mammary development, but displayed an increased ability to produce β-casein protein in virgin animals. In addition, beginning at approximately 8 mo of age, the testes of male transgenic animals became disorganized with apparent disintegration of interstitial tissue that normally surrounds the seminiferous tubules. The disruption of testis morphology was concurrent with the onset of infertility. These results suggest that overexpression of the matrix-degrading enzyme MAT alters the integrity of the extracellular matrix and thereby induces cellular differentiation and cellular destruction in a tissue-specific manner.


Author(s):  
Papia Khatun ◽  
Ziaul Haque ◽  
Shonkor Kumar Das

The microscopic features of the testis were studied in gonadally inactive Khaki Campbell duck (Anas platyrhynchos domesticus) in Bangladesh. The study was conducted in the Department of Anatomy & Histology, Bangladesh Agricultural University, Mymensingh. Five adult healthy birds of one-year-old were used for this study. The testes were collected immediately after ethical killing of the birds for histological observations. The collected tissue samples were then processed and stained with Hematoxylene & Eosin (H & E) stain for histological observations. The seminiferous tubules showed considerable involution with cessation of spermatogenesis. The basal lamina of the seminiferous tubules was irregular in outline and was invaginated into the germinal epithelium in the form of finger-like plicae or folds. Most of the lumen of the seminiferous tubules was empty and all generation of germ cells were not present in most of the seminifeous tubules. The interstitium showed a relative increase in volume and interstitial tissue consisted of loose connective tissue, interstitial cells (Leydig cells), few connective cells and blood vessels. This study first time described the microscopic features of testis of Khaki Campbell ducks in Bangladesh during inactive phases of the reproductive cycle.


Parasitology ◽  
1984 ◽  
Vol 88 (4) ◽  
pp. 575-577 ◽  
Author(s):  
N. A. Mitchison

Only a few years ago parasite immunology looked an unattractive subject better left to the dogged specialists. Parasites and hosts had been playing chess together for a million years, and there seemed little prospect of perturbing matters in favour of the host immune system. All that has changed, for three reasons. Firstly, we have learned how to grow at least some parasites in vitro, and prospects of doing so with others are encouraging. Secondly, progress in cellular immunology has revealed the sort of loopholes in the host defence system which parasites are likely to exploit: we are learning the questions which matter about parasites as antigens. Thirdly, and most importantly, molecular genetics is being brought to bear on parasites: we can now see a real, though long-term, prospect of manufacturing practicable vaccines through bio-engineering, and more immediately it gives us the tools needed to probe the host immune responses in the form of cloned antigens.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Van Brussel ◽  
Zwi N. Berneman ◽  
Nathalie Cools

Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.


1999 ◽  
Vol 23 (3) ◽  
pp. 299-306 ◽  
Author(s):  
S Valenti ◽  
S Thellung ◽  
T Florio ◽  
M Giusti ◽  
G Schettini ◽  
...  

The site of inhibition, by melatonin, of GnRH-dependent testosterone secretion was investigated in adult rat Leydig cells cultured in vitro. The various effects downstream of the binding of GnRH to its own receptor were isolated and mimicked by specific drugs. Testosterone secretion was then evaluated after 3 h stimulation with GnRH, thapsigargin (1 microM), phorbol-12-myristate-13-acetate (100 nM), arachidonic acid (20 microM), and ionomycin (1 microM) in the presence or absence of melatonin (215 nM). The effect of melatonin on the GnRH-induced changes in cytoplasmic calcium concentration ([Ca(2+)](i)) was also studied, using Fura-2 as fluorescent Ca(2+) indicator. Melatonin attenuated the increase in [Ca(2+)](i) and inhibited the testosterone secretion induced by GnRH, but not that induced by ionomycin. Both ionomycin and thapsigargin potentiated GnRH-induced testosterone secretion; however, ionomycin, but not thapsigargin, partially prevented the inhibitory effect of melatonin on cells stimulated with GnRH. The effect of melatonin was probably dependent on the binding of melatonin to its Gi-protein-coupled receptor, as the inhibitory effect on GnRH-induced secretion was supressed in cells pretreated with pertussis toxin in a concentration of 180 ng/ml for 20 h. Assay of 17-hydroxy-progesterone showed that, irrespective of the treatment, cells cultured with melatonin secreted greater amounts than controls. We conclude that melatonin reduces GnRH-induced testosterone secretion by 1) decreasing [Ca(2+)](i), through impairment of the GnRH-dependent release of Ca(2+) from intracellular stores and 2) blocking 17-20 desmolase enzymatic activity, an effect that occurs irrespective of changes in [Ca(2+)](i).


Sign in / Sign up

Export Citation Format

Share Document