Development of early cell lineages in marsupial embryos: an overview

1994 ◽  
Vol 6 (4) ◽  
pp. 507 ◽  
Author(s):  
L Selwood

All major embryonic and extra-embryonic cell lineages are established before implantation in marsupials. In reptiles, birds, monotremes and most marsupials, the zygote is polarized, sometimes markedly so, and the cleavage pattern in relation to the polarized state provides the mechanism for the generation of positional signals. These ensure that the embryonic cell lineages develop in the centre of the developing blastoderm or blastocyst epithelium and the extra-embryonic lineages at the periphery. The evolution of the vertebrate yolky egg was accompanied by a decreasing dependence on maternal determinants and increasing dependence on positional signals to determine cell fate. It is proposed that when a less yolky egg evolved, the mechanisms for determination of cell fate in a developing epithelium were retained. It is proposed that in marsupials, positional signals are involved in the determination of cell fate of embryonic and trophectoderm cells but do so in a two-dimensional epithelium not a three-dimensional morula. The next lineage formed is the primary endoderm which separates off from the primitive ectoderm in the embryoblast and eventually lines the blastocyst cavity. Positional signals are responsible for the determination of primary endoderm in eutherian mammals, birds and probably also marsupials. Order of cell division during cleavage provides a mechanism whereby some cells in the embryoblast of marsupials have earlier and greater contact with their neighbouring cells. The mechanism for determination of primary endoderm cells in the blastocyst epithelium is examined in the Virginia opossum and the stripe-faced dunnart.

Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4133-4141 ◽  
Author(s):  
H. Kato ◽  
Y. Taniguchi ◽  
H. Kurooka ◽  
S. Minoguchi ◽  
T. Sakai ◽  
...  

Notch is involved in the cell fate determination of many cell lineages. The intracellular region (RAMIC) of Notch1 transactivates genes by interaction with a DNA binding protein RBP-J. We have compared the activities of mouse RAMIC and its derivatives in transactivation and differentiation suppression of myogenic precursor cells. RAMIC comprises two separate domains, IC for transactivation and RAM for RBP-J binding. Although the physical interaction of IC with RBP-J was much weaker than with RAM, transactivation activity of IC was shown to involve RBP-J by using an RBP-J null mutant cell line. IC showed differentiation suppression activity that was generally comparable to its transactivation activity. The RBP-J-VP16 fusion protein, which has strong transactivation activity, also suppressed myogenesis of C2C12. The RAM domain, which has no other activities than binding to RBP-J, synergistically stimulated transactivation activity of IC to the level of RAMIC. The RAM domain was proposed to compete with a putative co-repressor for binding to RBP-J because the RAM domain can also stimulate the activity of RBP-J-VP16. These results taken together, indicate that differentiation suppression of myogenic precursor cells by Notch signalling is due to transactivation of genes carrying RBP-J binding motifs.


Science ◽  
2021 ◽  
Vol 371 (6535) ◽  
pp. 1245-1248
Author(s):  
Liana Fasching ◽  
Yeongjun Jang ◽  
Simone Tomasi ◽  
Jeremy Schreiner ◽  
Livia Tomasini ◽  
...  

Mosaic mutations can be used to track cell lineages in humans. We used cell cloning to analyze embryonic cell lineages in two living individuals and a postmortem human specimen. Of 10 reconstructed postzygotic divisions, none resulted in balanced contributions of daughter lineages to tissues. In both living individuals, one of two lineages from the first cleavage was dominant across tissues, with 90% frequency in blood. We propose that the efficiency of DNA repair contributes to lineage imbalance. Allocation of lineages in postmortem brain correlated with anterior-posterior axis, associating lineage history with cell fate choices in embryos. We establish a minimally invasive framework for defining cell lineages in any living individual, which paves the way for studying their relevance in health and disease.


Studies of the role of cell lineage in development began in the latter part of the 19th century, fell into decline in the early part of the 20th, and were revived about 20 years ago. This recent revival was accompanied by the introduction of new and powerful analytical techniques. Concepts of importance for cell lineage studies include the principal division modes by which a cell may give rise to its descendant clone (proliferative, stem cell and diversifying); developmental determinacy , or indeterminacy , which refer to the degree to which the normal cleavage pattern of the early embryo and the developmental fate of its individual cells is, or is not, the same in specimen after specimen; commitment , which refers to the restriction of the developmental potential of a pluripotent embryonic cell; and equivalence group , which refers to two or more equivalently pluripotent cell clones that normally take on different fates but of which under abnormal conditions one clone can take on the fate of another. Cell lineage can be inferred to have a causative role in developmental cell fate in embryos in which induced changes in cell division patterns lead to changes in cell fate. Moreover, such a causative role of cell lineage is suggested by cases where homologous cell types characteristic of a symmetrical and longitudinally metameric body plan arise via homologous cell lineages. The developmental pathways of commitment to particular cell fates proceed according to a mixed typologic and topographic hierarchy, which appears to reflect an evolutionary compromise between maximizing the ease of ordering the spatial distribution of the determinants of commitment and minimizing the need for migration of differentially committed embryonic cells. Comparison of the developmental cell lineages in leeches and insects indicates that the early course of embryogenesis is radically different in these phyletically related taxa. This evolutionary divergence of the course of early embryogenesis appears to be attributable to an increasing prevalence of polyclonal rather than monoclonal commitment in the phylogenetic line leading from an annelid-like ancestor to insects.


2006 ◽  
Vol 74 (4) ◽  
pp. 741-753 ◽  
Author(s):  
D. Bigoni ◽  
W. J. Drugan

Why do experiments detect Cosserat-elastic effects for porous, but not for stiff-particle-reinforced, materials? Does homogenization of a heterogeneous Cauchy-elastic material lead to micropolar (Cosserat) effects, and if so, is this true for every type of heterogeneity? Can homogenization determine micropolar elastic constants? If so, is the homogeneous (effective) Cosserat material determined in this way a more accurate representation of composite material response than the usual effective Cauchy material? Direct answers to these questions are provided in this paper for both two- (2D) and three-dimensional (3D) deformations, wherein we derive closed-form formulae for Cosserat moduli via homogenization of a dilute suspension of elastic spherical inclusions in 3D (and circular cylindrical inclusions in 2D) embedded in an isotropic elastic matrix. It is shown that the characteristic length for a homogeneous Cosserat material that best mimics the heterogeneous Cauchy material can be derived (resulting in surprisingly simple formulae) when the inclusions are less stiff than the matrix, but when these are equal to or stiffer than the matrix, Cosserat effects are shown to be excluded. These analytical results explain published experimental findings, correct, resolve and extend prior contradictory theoretical (mainly numerical and limited to two-dimensional deformations) investigations, and provide both a general methodology and specific results for determination of simple higher-order homogeneous effective materials that more accurately represent heterogeneous material response under general loading conditions. In particular, it is shown that no standard (Cauchy) homogenized material can accurately represent the response of a heterogeneous material subjected to a uniform plus linearly varying applied traction, while a homogenized Cosserat material can do so (when inclusions are less stiff than the matrix).


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Sign in / Sign up

Export Citation Format

Share Document