107 Localization of Kisspeptin Immunoreactivity in the Cat Ovary on Different Reproductive Stages

2018 ◽  
Vol 30 (1) ◽  
pp. 193
Author(s):  
P. Tanyapanyachon ◽  
O. Amelkina ◽  
K. Chatdarong

Kisspeptin (Kp) is considered one of the main regulators of the reproductive axis, exerting its effects via stimulating GnRH expression in the hypothalamus. Apart from its central localization in the hypothalamus, the presence of Kp has been reported in the ovary, with possible local function. To date, very little is known about the ovarian Kp in the domestic cat. Therefore, our aim was to investigate the presence and localization of Kp at different reproductive stages in domestic cat ovaries. Twenty ovaries were collected from free-ranging domestic cats (body weight 2.7–4.5 kg) after routine ovariohysterectomy. Reproductive stages were classified by ovarian gross morphology, vaginal cytology, and blood progesterone level. Ovarian samples were grouped into inactive (n = 6), follicular (n = 8), and luteal stages (n = 6). Tissues were fixed in 4% paraformaldehyde and processed routinely. Immunohistochemistry was performed using polyclonal rabbit Kp-10 primary antibody (AB9754; Millipore, Billerica, MA, USA) at 1:500 at 4°C overnight. Immunoreactive cells were identified by avidin-biotin-peroxidase system. Rat hypothalamic tissue was used as a positive control. Primary antibody was substituted with PBS and normal rabbit IgG as the negative and isotypic negative controls, respectively. In addition, primary antibody was incubated with metastin overnight and applied for preabsorption test. Negative, isotypic negative, and preabsorption tests showed no staining. Immunoreactive Kp was detected in the ovaries of all reproductive stages with no obvious changes in localization or intensity of staining between stages. Kisspeptin was present in the cytoplasm of oocytes, granulosa cells, and theca cells of preantral (primordial, primary, and secondary) follicles and antral follicles. Interestingly, in most follicles, Kp staining was more prominent in theca cells and oocytes compared with granulosa cells. In corpus luteum, Kp was localised in the cytoplasm of luteal cells, with more intense staining on the periphery of corpus luteum compared with the middle in 3 luteal samples, whereas the rest of the samples demonstrated homogeneous staining distribution. Apart from oocytes and steroidogenic cells, Kp was also present in the cytoplasm of cells of the ovarian surface epithelium. Our study for the first time demonstrated the presence and localization of Kp in the ovary of the domestic cats. The localization of Kp in the cat oocyte is similar to previous reports on hamsters and dogs, indicating a possible function in oocyte development. The staining in steroidogenic cells, mainly theca cells and luteal cells, is in good agreement with studies on hamsters, rats, humans, and marmosets, suggesting the possible local involvement of Kp in steroidogenesis. In addition, Kp staining in the ovarian surface epithelium suggests a possible role in the ovarian remodeling after ovulatory defects, as reported in humans and marmosets. This research was funded by the RGJ PhD program PHD/01882556; RG 7/2559.

2001 ◽  
Vol 49 (9) ◽  
pp. 1133-1142 ◽  
Author(s):  
Maria V.T. Lobo ◽  
F. Javier M. Alonso ◽  
Amparo Latorre ◽  
Rafael Martín del Río

The distribution of the amino acid taurine in the female reproductive organs has not been previously analyzed in detail. The aim of this study was to determine taurine localization in the rat ovary, oviduct, and uterus by immunohistochemical methods. Taurine was localized in the ovarian surface epithelium. The granulosa cells and oocytes of primordial follicles were immunonegative. In primary and antral follicles, taurine was found mainly in theca cells and oocytes, whereas the zona pellucida, antrum, and most granulosa cells were unstained. However, taurine immunoreactivity in theca cells and oocytes decreased during follicular atresia. During corpora lutea development, the number of immunopositive theca lutein cells increased as these cells invaded the granulosa-derived region. Therefore, most luteal cells from the mature corpora lutea were stained. In the regressing corpora lutea, however, taurine staining in luteal cells decreased. In the fimbriae, infundibulum, and uterotubal junction, taurine was localized in most epithelial cells. In the ampullar and isthmic segments, taurine was found in the cilia of most ciliated cells and in the apical cytoplasm of some non-ciliated cells. In the uterus, most epithelial cells were immunopositive during diestrus and metestrus, whereas most of them were immunonegative during estrus and proestrus. Moreover, taurine immunoreactivity in the oviduct and uterus decreased with pregnancy. (J Histochem Cytochem 49:1133–1142, 2001)


1997 ◽  
Vol 45 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Firyal S. Khan-Dawood ◽  
Jun Yang ◽  
M. Yusoff Dawood

We have recently shown the presence of E-cadherin and of α- and γ-catenins in human and baboon corpora lutea. These are components of adherens junctions between cells. The cytoplasmic catenins link the cell membrane-associated cadherins to the actin-based cytoskeleton. This interaction is necessary for the functional activity of the E-cad-herins. Our aim therefore was to determine the presence of α-actin in the baboon corpus luteum, to further establish whether the necessary components for E-cadherin activity are present in this tissue. An antibody specific for the smooth muscle isoform of actin, α-actin, was used for these studies. The results using immunohistochemistry show that (a) α-actin is present in steroidogenic cells of the active corpus luteum, theca externa of the corpus luteum, cells of the vasculature, and the tunica albuginea surrounding the ovary. The intensity of immunoreactivity for α-actin varied, with the cells of the vasculature reacting more intensely than the luteal cells. A difference in intensity of immunoreactivity was also observed among the luteal cells, with the inner granulosa cells showing stronger immunoreactivity than the peripheral theca lutein cells. There was no detectable immunoreactivity in the steroidogenic cells of the atretic corpus luteum. However, in both the active and atretic corpora lutea, α-actin-positive vascular cells were dispersed within the tissue. (b) Total α-actin (luteal and non-luteal), as determined by Western blot analyses, does not change during the luteal phase and subsequent corpus luteum demise (atretic corpora lutea). (c) hCG stimulated the expression of α-actin and progesterone secretion by the early luteal phase (LH surge + 1–5 days) and midluteal phase (LH surge + 6–10 days) cells in culture, but only progesterone in the late luteal phase (LH surge + 11–15 days). The data show that α-actin is present in luteal cells and that its expression is regulated by hCG, thus suggesting that E-cadherin may form functional adherens junctions in the corpus luteum.


1998 ◽  
Vol 76 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Jie Pan ◽  
Nelly Auersperg

Ovarian granulosa cells are derived embryologically from two keratin-positive epithelia of mesodermal origin, the ovarian rete and the ovarian surface epithelium. In the rat, presumptive granulosa cells still express keratin at birth but as they acquire functions related to oocyte support and steroidogenesis in the maturing ovary they lose this epithelial differentiation marker. Using double-label immunofluorescence microscopy, we examined the distribution of keratin-expressing granulosa cells in rat ovaries on days 1-10 postpartum in relation to (i) laminin and collagen type IV in follicular basement membranes, (ii) the zona pellucida, and (iii) 3β-hydroxysteroid dehydrogenase activity. Keratin was present in most (pre)granulosa cells on days 1-3. As the cells became multilayered in growing follicles, keratin was retained by granulosa cells adjacent to follicular basement membranes but disappeared from cells that were displaced towards follicular centers. From day 7 on, large follicles lacked keratin altogether. Laminin was a consistent component of follicular basement membranes at all ages, while collagen IV varied and diminished in parallel with keratin. 3β-Hydroxysteroid dehydrogenase was demonstrable in stromal interstitial cells from day 7 on. Zona pellucida first appeared in primary follicles adjacent to keratin-positive cells and subsequently became surounded with keratin-negative granulosa cells in growing follicles. The results suggest different roles for laminin and collagen IV in follicular basement membranes and support the hypothesis that keratin expression by granulosa cells depends on paracrine interactions with the ovarian stroma. In early growing follicles, these interactions may be interrupted by physical removal from the vicinity of the basement membranes as the granulosa cells become multilayered. In the more mature follicles, the loss of keratin from all granulosa cells suggests that the required stromal signals cease, perhaps as the perifollicular stroma differentiates into the theca.Key words: ovary, differentiation, keratin, basal membrane, development.


1998 ◽  
Vol 46 (9) ◽  
pp. 1043-1049 ◽  
Author(s):  
P. Bagavandoss ◽  
E. Helene Sage ◽  
Robert B. Vernon

In adult mammals, growth of new vasculature from extant blood vessels (angiogenesis) is rare in the absence of pathology. However, nonpathogenic angiogenesis occurs in the cycling ovary when the avascular postovulatory follicle transforms into a highly vascularized corpus luteum (CL). To improve our understanding of molecular mechanisms that regulate nonpathogenic vascular growth, we characterized the expression of two secreted matricellular proteins associated with angiogenesis, SPARC and thrombospondin (TSP), in postovulatory preluteal follicles and CL of hormone-primed immature rats. By indirect immunofluorescence with specific antibodies, we found SPARC in the cytoplasm of granulosa cells and thecal cells of preluteal follicles, in connective tissue cells of the ovarian interstitium, and in the oocyte nucleus. Administration of a luteinizing stimulus (chorionic gonadotropin) increased the expression of SPARC in granulosa cells. TSP was prominent in the basement membranes of growing follicles. Many cells in the early vascularizing CL expressed both SPARC and TSP. Neovascularization of CL was accompanied by expression of SPARC in nascent vessels and concentration of TSP in central avascular areas. In mature CL, steroidogenic luteal cells expressed both SPARC and TSP. Luteal cells of regressing CL retained SPARC to a variable degree but did not express TSP. The observed changes in expression of SPARC and TSP during development of the CL support distinct roles for these matricellular proteins in nonpathological morphogenesis and angiogenesis.


Development ◽  
2021 ◽  
Author(s):  
Martin Andres Estermann ◽  
Claire Elizabeth Hirst ◽  
Andrew Thomas Major ◽  
Craig Allen Smith

During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells; Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations, the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted mis-expression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.


2012 ◽  
Vol 12 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Ewa Chronowska

Stem Cell Characteristics of Ovarian Granulosa Cells - ReviewRecently increasing interest in stem cells of mammalian ovary has been observed. Potential somatic stem cells for the follicular theca and ovarian surface epithelium have been demonstated. On the other hand, despite intensive research, difinitive evidence for stem cell characteristics of granulosa cells is still to be found. Elucidation of stem cell properties of follicular granulosa cells may have important implications both from scientific and clinical point of view. The aim of this work is to review the current knowledge about stem cell properties of cells constituting main somatic compartment of the mammalian ovary, namely granulosa cells.


2002 ◽  
Vol 75 (3) ◽  
pp. 427-432 ◽  
Author(s):  
Ş. Arikan ◽  
A. A. Yigit

AbstractThe present study examines the size distribution of ovine steroidogenic and non-steroidogenic luteal cells throughout pregnancy. Cells were isolated from corpora lutea collected from early (< 8 weeks), mid (9 to 14 weeks) or late (15 to 18 weeks) stages of pregnancy. Cells were stained for 3β-hydroxysteroid dehydrogenase (3β-HSD) activity, a marker for steroidogenic cells. Both 3β-HSD positive and β-HSD negative cells covered a wide spectrum of size ranging from 7 to 37 μm in diameter. There was a significant increase (P > 0·01) in mean diameter of non-steroidogenic luteal cells as pregnancy progressed. Mean diameter of 3β-HSD negative cells increased from 17·8 (s.e. 0·4) μm in the corpus luteum of early stage of pregnancy to 22·4 (s.e. 0·3) μm in the corpus luteum of advanced pregnancy. However, there was no significant increase in the mean diameter of 3β-HSD positive cells. Corpora lutea obtained from early stages of the pregnancy contained more steroidogenic cells than the cells obtained from mid and late pregnancy (P < 0·01). Percentage of 3β-HSD negative cells had increased 2·07-fold by 18 weeks of pregnancy when compared with the early stage of pregnancy. In contrast, percentage of 3β-HSD positive cells had decreased to 50% of starting values during the same period (P < 0·05). These results indicate that the ovine corpus luteum of pregnancy is morphologically dynamic over the course of pregnancy. Steroidogenic activity of luteal cells may decrease as pregnancy progresses, especially activity of the large luteal cells.


2001 ◽  
Vol 73 (2) ◽  
pp. 323-327 ◽  
Author(s):  
Ş Arikan ◽  
A. Yigit

AbstractThis study was designed to investigate the size distribution of bovine steroidogenic luteal cells throughout pregnancy. Corpora lutea collected from three different stages of pregnancy were used. Luteal tissue was dissociated into single-cell suspension by enzyme treatments. Cells were stained for 3β-hydroxysteroid dehydrogenase (HSD) activity a marker for steroidogenic cells. The steroidogenic cells covered a wide spectrum of size ranging from 10 to 60 µm in diameter. There was a significant increase in mean cell diameter (P > 0·05) as pregnancy progressed. Mean diameter of 3β-HSD positive cells increased from 17·03 (s.e. 1·3) µm in the corpus luteum of early pregnancy to 33·38 (s.e. 2·4) µm in the corpus luteum of advanced pregnancy. The ratio of large (>22 µm in diameter) to small (10 to 22 µm in diameter) luteal cells was 0·32 : 1·0 in the early pregnancy, with the 10 to 22 µm cell size class predominant. However, the ratio of large to small luteal cells was increased to 6·49 : 1·0 µm as pregnancy advanced and 23 to 42 µm cell sizes become predominant. It is likely that small luteal cells develop into large cells as gestation progresses. Development of pregnancy is associated with an increase in size of steroidogenic luteal cells.


2021 ◽  
Author(s):  
Martin Andres Estermann ◽  
Claire E Hirst ◽  
Andrew T Major ◽  
Craig A Smith

During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells; Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations, the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in sex reversal experiments. In addition, targeted over-expression and gene knockdown experiments indicate that TGIF1 is required for proper ovarian cortical formation. TGIF1 is identified as the first known regulator of juxtacortical medulla formation. These findings provide new insights into chicken ovarian differentiation and development, specifically in the process of cortical and juxtacortical medulla formation, a poorly understood area.


2015 ◽  
Vol 27 (1) ◽  
pp. 142
Author(s):  
D. Scarlet ◽  
I. Walter ◽  
C. Aurich

In contrast to other domestic animal species, in vitro maturation (IVM) of oocytes in the horse is still not successful. Oocytes for IVM are obtained either from slaughterhouse ovaries or via ovum pick-up from living mares. Both situations may be associated with a stress-induced glucocorticoid release. So far, neither an involvement of glucocorticoids in follicle and oocyte maturation nor the presence of glucocorticoid receptors (GCR) in ovarian tissue has been investigated in the horse. We hypothesised that GCR are expressed in equine ovarian tissue independent of the animal's age and stage of the oestrous cycle. Ovaries (n = 40) were collected from killed newborn female foals (n = 10) and killed or slaughtered adult mares (n = 10). For assessment of GCR mRNA expression, ovarian samples were fixed in Tissue-Tek O.C.T. Compound (Sakura Finetek, Zoeterwoude, the Netherlands) and stored at –80°C. Various cell populations were isolated using laser capture microdissection on cryosections. After RNA extraction, samples were analysed by qualitative RT-PCR and real time-PCR. For analysis of GCR protein, tissue was fixed in Bouin's solution and histological slides immunostained using a monoclonal antibody for GCR (Ab2768, Abcam, Cambridge, UK), followed by visualisation with diaminobenzidine. One tertiary follicle per slide (40×; light microscopy) was analysed and percentages of cells staining positive for GCR calculated. Statistical analysis was done with the SPSS Statistics 21 software (SPSS Inc., Chicago, IL, USA). Expression of mRNA for GCR was detected in oocytes, cumulus cells, granulosa, and theca cells, independent of age and stage of the oestrous cycle. In both neonates and adults, nuclei of the oocytes and cumulus cells stained positive for GCR regardless of stage of folliculogenesis. Also, GCR were constantly expressed in granulosa cells from both preantral and antral follicles. Percentage of granulosa cells staining positive for GCR (adult: 73.6 ± 3.2, fillies: 72.4 ± 1.9%) was higher (P < 0.001) than of theca cells (adult: 56.8 ± 3.9, fillies: 57.2 ± 1.9%), but not affected by age. GCR were lacking in ovarian stroma of adults but not of neonates. In periovulatory follicles from adult mares, GCR were abundant in developing luteal cells. GCR were also detected in the nuclei of luteal cells in corpora haemorrhagica and corpora lutea. Follicular atresia was associated with a decrease of GCR independent of cell type and age. This study describes for the first time the expression of GCR in horse ovaries, which are present independent of age of the animal, stage of folliculogenesis, and oestrous cycle stage. Results suggest that glucocorticoids are involved in follicular and oocyte maturation, ovulation, and luteal function in the horse. Presence of GCR in the ovaries of newborn horses suggests a role of glucocorticoids in ovarian tissue maturation. Nevertheless, detrimental effects of excess glucocorticoid secretion due to stress on follicular development, oocyte maturation, and luteal function cannot be excluded in the mare.


Sign in / Sign up

Export Citation Format

Share Document