56 Nobiletin affects gene expression profiles of the ERK1/2 pathway in bovine embryos produced invitro

2021 ◽  
Vol 33 (2) ◽  
pp. 135
Author(s):  
Y. N. Cajas ◽  
K. E. Cañón-Beltrán ◽  
C. L. V. Leal ◽  
A. Gutierrez-Adán ◽  
E. González ◽  
...  

During embryo development the embryonic genome activation (EGA) is one of the most important events and in bovine embryos it occurs at the 8- to 16-cell stage. Invitro embryo production increases the levels of reactive oxygen species (ROS), which leads to the low quality of the produced blastocysts, possibly by affecting EGA. Nobiletin is an antioxidant that affects cell cycle regulation (Huang et al. 2016 Evid. Based. Complement. Alternat. Med. 2016, 2918796, https://doi.org/10.1155/2016/2918796). Therefore, we aimed to evaluate the effect of nobiletin supplementation, in two key periods of early embryo development, on blastocyst yield and expression of selected genes of the ERK1/2 pathway and oxidative stress on produced embryos. Invitro zygotes were cultured in synthetic oviductal fluid (SOF) with 5% fetal calf serum (control, C); C with 5 or 10µM nobiletin (MedChemExpress) (N5, N10); or C with 0.03% dimethyl sulfoxide (CDMSO; vehicle for nobiletin dilution) during the minor (21–54h post-insemination (hpi): 2- to 8-cell; MNEGA; 12 replicates) or major (54–96 hpi: 8- to 16-cell; MJEGA; 10 replicates) phase of EGA. The speed of development was considered and embryos that reached ≥8 cells at 54 hpi from MNEGA phase and ≥16 cells at 96 hpi from MJEGA phase, were selected and further cultured in control medium until Day 7. Embryos at ≥8 cell (MNEGA), ≥16 cell (MJEGA) stage, and Day 7 blastocysts from both periods were snap-frozen in liquid N2 for gene expression analysis (3 pools of 10 embryos/treatment). The expression of genes related to ERK1/2 pathway (H3–3B, H3–3A, NFE2L2) and oxidative stress (GPX1) were measured by quantitative PCR; H2AFZ and ACTB were used as housekeeping genes. Statistical analysis was assessed by one-way ANOVA. At 54 hpi, irrespective of nobiletin supplementation, no differences were found in the proportion of embryos that reached the 8-cell stage between groups in both phases (≈60%). At 96 hpi, nobiletin during MJEGA showed a higher proportion of embryos reaching the 16-cell stage than control groups (≈70% vs. ≈60%, respectively; P<0.001). Blastocyst yield for MNEGA and MJEGA was higher (P<0.001) for N5 (40.0±0.8% and 46.7±0.8%) and N10 (41.0±0.9% and 54.5±1.1%) compared with C (32.0±0.6% and 38.4±1.1%) and CDMSO (31.2±0.4% and 35.8±1.0%) groups, while N10 was higher (P<0.05) compared to N5 group in MJEGA. The expression of H3–3B and H3–3A were higher (P<0.05) in 8-cell embryos from N5 and N10 groups during MNEGA; while in 16-cell embryos, H3–3B and NFE2L2 were higher (P<0.05) only in the N10 group compared with both controls during MJEGA. GPX1 was upregulated in nobiletin-supplemented groups from both phases (8- and 16-cell embryos and blastocysts) compared with controls (P<0.05). In conclusion, nobiletin supplementation during minor or major EGA has a positive effect in pre-implantation embryo development and modifies the transcription of cell cycle and oxidative stress genes in early embryos. These benefits can be attributed to its bioactivity and indicate that it might be a tool to overcome EGA and ROS disorders in bovine invitro-produced embryos.This research was funded by MINECO-Spain AGL2015-70140-R, PID2019-111641RB-I00, RTI2018-093548-B-I00; SENESCYT-Ecuador; FAPESP-Brazil 2017/20339-3, CNPq-Brazil 304276/2018-9.

2020 ◽  
Vol 32 (2) ◽  
pp. 164
Author(s):  
Y. N. Cajas ◽  
K. Cañón-Beltrán ◽  
C. L. V. Leal ◽  
M. E. González ◽  
A. Gutierrez-Adán ◽  
...  

Embryonic genome activation (EGA) is a critical event in early embryonic development and occurs in 8-16-cell stage embryos in bovine. Invitro embryo production increases reactive oxygen species (ROS), leading to low yield and cell death. Nobiletin is an antioxidant that inhibits ROS production and affects cell cycle regulation. The aim of this study was to evaluate the effect of nobiletin supplementation in two key periods of early embryo development on blastocyst yield and expression of candidate genes of the Akt pathway. Invitro-produced zygotes were cultured in synthetic oviductal fluid supplemented with 5% FCS (control; C); C with 5 or 10 µM nobiletin (MedChemExpress; N5, N10) or C with 0.03% dimethyl sulfoxide (CD vehicle for nobiletin dilution) during the minor (2-8-cell stage; MNEGA) or major (8-16-cell stage; MJEGA) phase of EGA, considered as two separate experiments. For all groups, the speed of development was considered, and normally developing embryos that reach ≥8 cells at 54h post-insemination and ≥16 cells at 96h post-insemination were selected and cultured in control medium until Day 8, respectively. Embryos at ≥8-cell stage (N5/N10 MNEGA), 16-cell stage (N5/N10MJEGA), and Day 7 blastocysts of both periods were snap-frozen in LN2 for gene expression analysis. Cleavage rate and blastocyst yield (Day 7-8) were evaluated. The mRNA abundance of candidate genes related to the Akt pathway (CDK2, PGC1A, PPARG, RPS6KB1) and oxidative stress (GPX1) was measured by quantitative PCR. The H2AFZ and ACTB genes were used as housekeeping genes. Statistical analysis was assessed by one-way ANOVA. Nobiletin supplementation during MNEGA showed no differences in cleavage rate, whereas the blastocyst yield at Day 8 was higher (P<0.001) for N5 (42.9±1.4%) and N10 (45.3±2.1%) compared with C (32.9±1.1%) and CD (32.6±1.4%) groups. When nobiletin was supplemented during MJEGA, no differences were found in cleavage rate; however, Day 8 blastocyst yield was higher (P<0.001) for N10 (61.8±0.7%) compared with C (45.2±1.7%), CD (43.6±1.4%), and N5 (52.1±2.1%) groups, whereas N5 was higher (P<0.05) compared with both control groups. The mRNA abundance of CDK2 significantly increases in 8-cell stage embryos from N5 and N10 groups during MNEGA, whereas 16-cell stage embryos from N10 group during MJEGA showed a significant increase compared with both controls (P<0.05). The expression of PGC1A was significantly higher in blastocysts from N5, N10 during MNEGA, and N10 during MJEGA groups compared with both controls (P<0.05). No differences were observed for PPARG and RPS6KB1 in any group from both phases. GPX1, an oxidative indicator gene, was up-regulated in all nobiletin-supplemented groups from both phases compared with controls (P<0.05). In conclusion, supplementation of embryo culture during MNEGA or MJEGA with nobiletin improves embryo development and induces changes in the transcriptional genes related to cell cycle regulation and oxidative stress. This suggests that nobiletin acts through the Akt pathway during the first stages of embryonic development. Funding was provided by MINECO-Spain AGL2015-70140-R&RTI2018-093548-B-I00; Y. N. Cajas, SENESCYT-Ecuador; C. L. V. Leal, FAPESP-Brasil 2017/20339-3.


2009 ◽  
Vol 21 (1) ◽  
pp. 112
Author(s):  
I. Choi ◽  
K. H. S. Campbell

After fertilization, early embryo development is dependent upon maternally inherited proteins and protein synthesised from maternal mRNA until zygotic gene activation (ZGA) occurs. The transition of transcriptional activity from maternal to embryonic control occurs with the activation of rRNA genes and the formation of the nucleolus at the 8- to 16-cell stage that coincides with a prolonged fourth cell cycle in bovine and ovine embryos. However, previous studies have reported a shift in the longest cell cycle (fifth cell cycle) in bovine somatic cell nuclear transfer (SCNT) embryos, suggesting that the major genome activation is delayed, possibly due to incomplete changes in chromatin structure such as hypermethylation and hypoacetylation of histone (Memili and First 2000 Zygote 8, 87–96; Holm et al. 2003 Cloning Stem Cells 5, 133–142). Although global gene expression profile studies have been carried out in somatic cell nuclear transfer embryos, little is known about the expression of genes which can alter chromatin structure in early embryo development and possibly effect ZGA. To determine whether epigenetic reprogramming of donor nuclei affected ZGA and expression profiles in SCNT embryos, ZBTB33 (zinc finger and BTB domain containing 33, also known as kaiso, a methy-CpG specific repressor), BRG1(brahma-related gene 1, SWI/SNF family of the ATP-dependent chromatin remodeling complexes), JMJD1A (jumonji domain containing 1A, H3K9me2/1-specific demethylase), JMJD1C (putative H3K9-specific demethylase), and JMJD2C (H3K9me3-specific demethylase) were examined by RT-PCR at different developmental stages [germinal vesicle (GV), metaphase II (MII), 8- to 16-cell, 16- to 32-cell, and blastocyst in both parthenogenetic and SCNT embryos]. All genes were detected in parthenogenetic and SCNT blastocyts, and ZBTB33 was also expressed in all embryos at all stages tested. However, the onset of expression of JMJD1C, containing POU5F1 binding site at 5′-promoter region and BRG1 required for ZGA are delayed in SCNT embryos as compared to parthenotes (16- v. 8-cell, and blastoocyst v. 16-cell stage). Furthermore, JMJD2C containing NANOG binding sites at the 3′-flanking region was expressed in GV and MII oocytes and parthenogenetic blastocysts, whereas in SCNT embryos, JMJD2C was only observed from the 16-cell stage onwards. Interestingly, JMJD1A, which is positively regulated by POU5F1, was not detected in GV and MII oocytes but was present in blastocyst stage embryos of both groups. Taken together, these results suggest that incomplete epigenetic modifications of genomic DNA and histones lead to a delayed onset of ZGA which may affect further development and establishment of totipotency. Subsequently, aberrant expression patterns reported previously in SCNT embryos may be attributed to improper expression of histone H3K9 and H3K4 demethylase genes during early embryo development.


2016 ◽  
Vol 28 (4) ◽  
pp. 482 ◽  
Author(s):  
Qi-En Yang ◽  
Manabu Ozawa ◽  
Kun Zhang ◽  
Sally E. Johnson ◽  
Alan D. Ealy

Protein kinase C (PKC) delta (PRKCD) is a member of the novel PKC subfamily that regulates gene expression in bovine trophoblast cells. Additional functions for PRKCD in early embryonic development in cattle have not been fully explored. The objectives of this study were to describe the expression profile of PRKCD mRNA in bovine embryos and to examine its biological roles during bovine embryo development. Both PRKCD mRNA and protein are present throughout early embryo development and increases in mRNA abundance are evident at morula and blastocyst stages. Phosphorylation patterns are consistent with detection of enzymatically active PRKCD in bovine embryos. Exposure to a pharmacological inhibitor (rottlerin) during early embryonic development prevented development beyond the eight- to 16-cell stage. Treatment at or after the 16-cell stage reduced blastocyst development rates, total blastomere numbers and inner cell mass-to-trophoblast cell ratio. Exposure to the inhibitor also decreased basal interferon tau (IFNT) transcript abundance and abolished fibroblast growth factor-2 induction of IFNT expression. Furthermore, trophoblast adhesion and proliferation was compromised in hatched blastocysts. These observations provide novel insights into PRKCD mRNA expression profiles in bovine embryos and provide evidence for PRKCD-dependent regulation of embryonic development, gene expression and post-hatching events.


2013 ◽  
Vol 25 (1) ◽  
pp. 193
Author(s):  
J. Caudle ◽  
C. K. Hamilton ◽  
F. A. Ashkar ◽  
W. A. King

Sexual dimorphisms such as differences in growth rate and metabolism have been observed in the early embryo, suggesting that sex chromosome-linked gene expression may play an active role in early embryo development. Furthermore, in vitro sex ratios are often skewed toward males, indicating that Y-linked genes may benefit development. While little attention has been paid to the Y chromosome, expression of some Y-linked genes such as SRY and ZFY has been identified in the early embryo, and only a few studies have systematically examined early stages. Identification of transcripts of Y-linked genes in the early embryo may provide insights into male development and provide markers of embryonic genome activation in male embryos. The objectives of this study were i) to examine the timing of transcription of 2 Y chromosome-linked genes involved with sperm production and male development, ubiquitin-specific peptidase 9 (USP9Y) and zinc finger protein (ZFY), in in vitro-produced bovine embryos from the 2-cell stage to the blastocyst stage and ii) to determine if USP9Y and ZFY transcripts are present in in vitro-produced embryos arrested at the 2- to 8-cell stages. To examine the chronology of transcription of these genes, pools of 30 embryos for each developmental stage, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst, were produced by bovine standard in vitro embryo production (Ashkar et al. 2010 Hum. Reprod. 252, 334–344) using semen from a single bull. Pools of 30 were used to balance sex ratios and to account for naturally arresting embryos. Embryos for each developmental stage were harvested and snap frozen. Total RNA was extracted from each pool, reverse transcribed to cDNA and by using PCR, and transcripts of USP9Y and ZFY were detected as positive or negative. In addition pools of 30 embryos arrested at the 2- to 8-cell stage harvested 7 days after IVF were processed and analysed in the same way to determine if transcripts from the Y chromosomes are present in developmentally arrested embryos. Transcripts of USP9Y and ZFY were detected in the pooled embryos from the 8-cell stage through to the blastocyst stage, but none were detected in the 2-cell or 4-cell pools. Transcripts of ZFY were detected in the arrested 2- to 8-cell embryo pool, but transcripts of USP9Y were not detected. Given that these Y genes begin expression at the 8-cell stage, coincident with embryonic genome activation, it was concluded that these genes may be important for early male embryo development. Furthermore, the results suggest that arrested embryos that have stopped cleaving before the major activation of the embryonic genome are still capable of transcribing at least some of these genes. The absence of USP9Y transcripts in the arrested embryos suggests that it may be important for early male embryo development. Funding was provided by NSERC, the CRC program, and the OVC scholarship program.


2016 ◽  
Vol 28 (2) ◽  
pp. 220
Author(s):  
S. Matoba ◽  
M. Kaneda ◽  
T. Somfai ◽  
T. Nagai ◽  
M. Geshi

Previously early first and second cleavages after IVF associated with even blastomeres without fragments or protrusions were found to be a potent criterion for the selection of embryos with high development competence (Sugimura et al. 2012 PLOS One 7, e36627). The aim of this study was to examine the relationship between an early normal first cleavage pattern and the transcript abundance in each blastomere in 2-cell stage bovine embryos. IVF-derived bovine embryos were cultured individually in microwells culture dish in CR1aa medium supplemented with 5% calf serum and 0.25 mg mL–1 linoleic acid albumin at 38.5°C in 5% CO2, 5% O2, and 90% N2. First cleavage and cleavage patterns were categorised as being either normal (the first cleavage within 28 h after IVF with 2 even blastomeres without fragment or protrusion) or abnormal (2 uneven blastomeres, with/without fragment/protrusion and/or later than 28 h after IVF at the first cleavage). Next, cleaved embryos were placed in 0.5% actinase-E in Ca- and Mg-free PBS and blastomeres were separated by pipetting. Individual blastomeres (n = 71, 10 replicates) were analysed for gene expression by quantitative RT-PCR. Primers were designed for 19 target genes related to pluripotency, cell cycle, metabolism, pregnancy reorganization, placentation and fetal growth (NANOG, OCT4, PLAC8, ATP1A1, CCNB1801, CDH1, COX1, CTNNB1, G6PDH, Glut8, MNSOD-3end, SOX2, DYNLL1, IGF1R, IGF2, IGF2R, IGFBP2, IGFBP3, and PMSB1) and a reference gene (PPIA). Transcript abundance of target genes in both of individual blastomeres of cleaved embryos was examined in embryos that cleaved early with a normal cleavage pattern and in those that showed abnormal cleavage pattern. Values were normalised to the average values of the reference genes and means were compared by the student t-test. Transcript abundance of OCT4, ATP1A1, CCNB1801, CDH1, COX1, CTNNB1, MNSOD-3end, IGF2R, and IGFBP2 was significantly higher in blastomeres associated with all categorised abnormal blastomeres compared towith an early normal cleavage (P < 0.05). Furthermore, the expression of PLAC8, IGF1R, and PMSB1 in embryos having 2 uneven blastomeres, Glut8 and SOX2 in 2 uneven blastomeres with fragment/protrusion was higher than that in normal cleavage (P < 0.05). However, the level of G6PDH was lower in embryos having 2 uneven blastomeres than that in those showing normal cleavage (P < 0.05). Our results reveal blastomere gene expression in bovine embryos at the first cleavage may correlated with oocyte developmental competence. This study was supported by JSPS KAKENHI (26450388).


2005 ◽  
Vol 17 (2) ◽  
pp. 231
Author(s):  
V. Havlicek ◽  
F. Wetscher ◽  
T. Huber ◽  
M. Gilles ◽  
D. Tesfaye ◽  
...  

Oviduct as well as oocyte and embryo development are subject to developmental changes which have crucial effects on the application of in vivo culture. The present study aimed at optimizing in vivo culture of IVP bovine embryos at different developmental stages in the bovine oviduct. Cumulus oocyte complexes (COC) were collected from slaughterhouse ovaries, matured in vitro for 22 h and assigned to four groups. In groups I and II, oocytes were pre-incubated for 3 to 4 h with 5 × 106 sperm/mL, and then immediately transferred to recipients, which had just completed ovulation (group I), or kept in vitro for a further 12 to 18 h and transferred to Day 1 synchronized recipients (group II). In groups III and IV, COC were subjected to standard IVF/IVC; then embryos were either transferred at the 4- to 8-cell stage on Day 3 into the oviducts of Day 3-synchronized recipients (group III) or kept in vitro for a further 4 to 5 days (group IV). Thirty-four 18- to 30-month-old temporary recipients were synchronized using a standard Ovsynch protocol. COC and embryos were transferred and re-collected by transvaginal endoscopy. COC or embryos were loaded into a 180° curved glass capillary, which was inserted via the infundibulum 5 to 8 cm deep into the ampulla ipsilateral to the CL. On recipient Day 7, a 90° curved metal canula served for tubal flushing prior to conventional uterine embryo flushing. Sixty mL of PBS containing 1% fetal calf serum were rinsed through the oviduct into the uterus and a further 400 mL of medium were finally used for flushing of the uterine horn and collected via an embryo filter. Embryo development was evaluated directly after flushing (Day 7) and on Day 8. For statistical analysis (ANOVA), the blastocyst rates (Days 7 and 8) in group III were related to COC corrected by the collection rate. In group I, 575 COC were transferred to 11 recipients and 420 (73%) were re-collected as oocytes or embryos. The blastocyst yields on Day 7 and Day 8 were 23% (97) and 25% (104), respectively. In group II, the transfer of 489 presumptive zygotes into 13 heifers resulted in only 175 re-collected (36%), of which 15% developed into blastocysts (Day 7: 26; Day 8: 27). Ten heifers (group III) served for in vivo culture of 643 embryos at the 4- to 8-cell stage. On Day 7, 568 (88%) embryos were flushed and 171 (30%) reached the blastocyst stage. A further 24 h culture in vitro finally resulted in 244 (42%) blastocysts. The complete in vitro production system delivered 13% (63/477) blastocysts on Day 7 and 34% (161/477) blastocysts on Day 8. The collection rates (P < 0.001) and the blastocyst rates on Day 7 (P < 0.05) and Day 8 (P < 0.001) differed significantly in all groups. The present data demonstrate that the developmental stage of transferred complexes has an influence on embryo recovery as well as an embryo development. This work was supported by Austrian BMBWK and BMLFUW (#1227).


Reproduction ◽  
2017 ◽  
Vol 153 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Ricaurte Lopera-Vasquez ◽  
Meriem Hamdi ◽  
Veronica Maillo ◽  
Alfonso Gutierrez-Adan ◽  
Pablo Bermejo-Alvarez ◽  
...  

The aim of this study was to evaluate the effect of extracellular vesicles (EV) from oviductal fluid (OF), either from the ampulla or isthmus, on the development and quality of in vitro-cultured bovine embryos. Zygotes were cultured in synthetic oviduct fluid (SOF + 3 mg/mL BSA) without calf serum (C− group), in the presence of 3 × 105 EV/mL from ampullary or isthmic OF at either 1 × 104 g (10 K) or 1 × 105 g (100 K), and compared with SOF + 5% FCS (C+ group). OF-EV size and concentration were assessed by electron microscopy and nanotracking analysis system. Embryo development was recorded on Days 7–9, and blastocyst quality was assessed through cryotolerance and gene expression analysis. Lower blastocyst yield was observed on Day 7 in the C− and OF-EV groups (12.0–14.3%) compared with C+ (20.6%); however, these differences were compensated at Days 8 and 9 (Day 9: 28.5–30.8%). Importantly, the survival rate of blastocysts produced with isthmic 100 K OF-EV was higher than that of C+ and C− group at 72 h after vitrification and warming (80.1 vs 34.5 and 50.5% respectively, P < 0.05). In terms of gene expression, blastocysts produced in the presence of 100 K isthmic OF-EV upregulated the water channel AQP3 and DNMT3A and SNRPN transcripts compared with the C+, with the expression in C− being intermediate. The lipid receptor LDLR was downregulated in C+ compared with all other groups. In conclusion, the addition of oviductal fluid extracellular vesicles from isthmus, to in vitro culture of bovine embryos in the absence of serum improves the development and quality of the embryos produced.


Sign in / Sign up

Export Citation Format

Share Document