Assessing the importance of livestock water use in basins

2009 ◽  
Vol 31 (2) ◽  
pp. 195 ◽  
Author(s):  
S. E. Cook ◽  
M. S. Andersson ◽  
M. J. Fisher

Recent concern over food prices has triggered a renewed interest in agricultural production systems. While attention is focused mainly on cropping, a complete analysis of food production systems should recognise the importance of livestock as major consumers of resources – in particular water – and as providers of food and other products and services. We propose that there is a need to examine not just food systems in isolation, but combined food and water systems, both of which are described as in a critical condition. From this broader perspective, it appears even more important to understand livestock systems because first, a total evaluation of agricultural water productivity – the gain from water consumed by agriculture – cannot be made without understanding the complexities of livestock-containing systems and; second, because in most tropical river basins, livestock systems are the major consumers of water. To identify total water productivity of livestock-containing systems, we describe concepts of agricultural water productivity and review the complexities of tracking the flow of water through livestock-containing systems: from inputs as evapotranspiration (ET) of forage and crops to outputs of valued animal products or services. For the second part, we present preliminary results from water use accounts analysis for several major river basins, which reveal that for Africa at least, livestock systems appear to be the major water consumers. Yet, little is known about the fate of water as it passes through these systems. We propose that livestock-containing systems offer substantial scope for increasing total water productivity and that there is considerable merit in improving the capacity to analyse water consumption and water productivity through such systems. Without removing this major source of uncertainty, the potential for systemic improvement to meet the world food and water crisis remains undefined and hence under-acknowledged.

Author(s):  
Mieghan Bruce ◽  
Camille Bellet ◽  
Jonathan Rushton

Beef production is considered to have a large water footprint, with values ranging from 3.3 to 75,000 L H20/kg. The water consumption in beef production is primarily associated with feed, estimated to be about 98%, with other requirements representing less than 1%. However, beef production is a complex system where cattle are often raised in different areas using a range of resources over their lifetime. This complexity is demonstrated using three countries with very different environments and production systems, namely Australia, Brazil, and Kenya. To achieve efficient water use in beef systems, and food systems more generally, a classification system that reflects how animals are managed, slaughtered, and processed is required. Methods for assessing water use in livestock systems, from production to consumption, need to be standardized, whilst also including the alternative uses, multiple uses, and benefits of a certain resource in a specific location.


2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


Author(s):  
Denise Peth ◽  
Katrin Drastig ◽  
Annette Prochnow

The German wine sector has encountered new challenges in water management recently. To manage water resources responsibly, it is necessary to understand the relationship between the input of water and the output of wine, in terms of quantity and quality. The objectives of this study are to examine water use at the farm scale at three German wineries, and to develop and apply, for the first time, a quality-based indicator. Water use is analyzed in terms of wine production and wine-making over three years. After the spatial and temporal boundaries of the wineries and the water flows are defined, the farm water productivity indicator is calculated to assess water use at the winery scale. Farm water productivity is calculated using the AgroHyd Farmmodel modeling software. Average productivity on a quantity basis is 3.91 L wine per m3 of water. Productivity on a quality basis is 329.24 °Oechsle per m3 of water. Water input from transpiration for wine production accounts for 99.4–99.7% of total water input in the wineries, and, because irrigation is not used, precipitation is the sole source of transpired water. Future studies should use both quality-based and mass-based indicators of productivity.


2020 ◽  
Vol 36 (1) ◽  
pp. 11-24 ◽  
Author(s):  
Vikram Kumar ◽  
Sumit Sen

HighlightsSpring flows are the primary source of water for rural Himalayan communities.An attempt was made to understand the potential of spring discharge as an alternative irrigation source.Improved management of resources is vital to account for agricultural water use.Managing water resources is a collective endeavor for achieving water security.Abstract.With increasing population and restricted water and land resources, there is a growing concern for better planning of the available water and land resources. In the mountainous regions or mountains, there is limited land with uncertain water availability as the rainfall patterns pose a major threat to the livelihood of the people. Therefore, it becomes necessary to quantify and manage the available water resources in a sustainable way. People in the Himalayas are mainly dependent on the springs for drinking water, but not much attention has been dedicated to the development and conservation of these springs. A spring in the Tehri-Garhwal district of Uttarakhand state of India, has been continuously monitored to quantify the available water for domestic use and agriculture. In this study, an attempt is made to understand the potential of a spring for agricultural water use by evaluating the crop water requirement and potential improved strategies to increase the water productivity. Analysis proves that crop evapotranspiration is higher (946-1062 mm) for crops with extended duration (165-180 days) as compared to evapotranspiration (92.91 mm) of short duration (60 days) crops. The total water requirement for major crops in the area is 6411.35 mm and the monitored spring has the potential to supplement this water requirement. Adopting the system of rice intensification to increase the rice yield (by 49%), increases the water productivity. The sensitivity analysis of benefit to cost suggests that, an increase in the crop yield by 30% can increase the revenue in the study area by Rs.3687197, which is 217% more than the input costs. Therefore, it is essential to optimize the available water and area for irrigation to achieve the global water security for increasing population. Further, utilizing springs as potential irrigation sources will support rural community in meeting domestic water requirement and achieving environmental sustainability. Findings of this study will help in planning and implementing management strategies that are resilient in the face of future changes and improve the economic condition of farmers. Keywords: Crop evapotranspiration, Himalaya, Optimization, Sensitivity analysis, Spring.


2021 ◽  
Vol 13 (2) ◽  
pp. 677-685
Author(s):  
O. P. Singh ◽  
P. K. Singh

With the growing irrigation water scarcity, the researchers and policymakers are more concerned to improve the irrigation water use efficiency at farmers’ field level. The water-saving technologies provide greater control over water delivery to the crop root zone and reduce the non-beneficial evaporation from the crop field. Water productivity is an important concept for measuring and comparing water use efficiency. The present study tried to estimate the irrigation water use and physical water productivity of cotton under alternate furrow and drip irrigation methods in the Bhavnagar district of Gujarat. Results suggest that crop yield and physical water productivity were higher for cotton irrigated by drip method than alternate furrow method during normal rainfall and drought year. The irrigation water use under the drip method of irrigation was lower as compared to the alternate furrow method. In the case of total water (effective rainfall + irrigation water) use, per hectare crop yield and physical water productivity were higher for the drip method of irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall and drought year. In the case of total water use (effective rainfall + irrigation water), it was lower for drip irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall year and drought year. While estimating total water (effective rainfall + irrigation water) use, it was assumed that there is no return flow of water from the cotton field in the study area under both irrigation methods.


2015 ◽  
Vol 4 (2) ◽  
pp. 57 ◽  
Author(s):  
Robert Mulebeke ◽  
Geoffrey Kironchi ◽  
Moses M. Tenywa

<p>A remarkable challenge lies in maximizing agricultural water productivity, particularly in the drought prone regions of sub Saharan Africa. It is hypothesized that water use efficiency (WUE) can be increased by selection of appropriate cropping management systems. This study seeks to establish the effects of cropping management on water use efficiency in cassava-sorghum cropping systems in the drylands of eastern Uganda. A randomised complete block design (RCBD) consisting of six treatments: sole cassava, sole sorghum, sole cowpea, cassava + sorghum, cassava + cowpea, and sorghum + cowpea, replicated three times were used. Two tillage practices; mouldboard ploughing (Mb) and, ripping (Rp) were used to assess the effect of tillage. WUE (kg ha<sup>-1</sup> mm<sup>-1</sup>) was calculated as a ratio of yield (kg ha<sup>-1</sup>) to evapotranspiration (ET) (mm). ET was estimated using the soil water balance. WUE varied significantly (?= 0.05) between cropping systems with the highest observed in cassava (34.38 kg ha<sup>-1</sup> mm<sup>-1</sup>) while the lowest was 3.76 kg ha<sup>-1</sup> mm<sup>-1</sup> for sorghum. WUE did not differ appreciably in both Mb and Rp tillage practices. Farmers growing sole cassava could use either of the tillage practices. The best yield was recorded in cassava + cowpea cropping system under Mb ploughing and sole sorghum under Rp gave the poorest combined yield (1,676 kg ha<sup>-1</sup>). <strong></strong></p>


2009 ◽  
Vol 49 (10) ◽  
pp. 788 ◽  
Author(s):  
G. D. Millar ◽  
R. E. Jones ◽  
D. L. Michalk ◽  
S. Brady

The Grain & Graze Whole-Farm Model was developed as a simple modelling tool to identify better strategies to improve the income of farmers and overcome grassland degradation. Using information on farm structure, crop and forage production systems, livestock production systems and variable costs involved in all enterprises, maximum whole-farm gross margins are obtained for an optimum or a prescribed mix of enterprises. The incorporation of production systems for different rainfall scenarios enables climatic risks and water use efficiencies of different enterprises to be investigated. Model simulations demonstrated the potential improvements that could be achieved in dollar water use efficiency ($WUE), by changes in management and/or changes in enterprise. The design of the model makes it a valuable tool for evaluating new systems, as it easy to develop new crop, pasture and livestock systems. Innovative farming systems such as pasture cropping and alley farming are included in the model.


2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Zhibin Liu ◽  
Tie Liu ◽  
Yue Huang ◽  
Yangchao Duan ◽  
Xiaohui Pan ◽  
...  

The intensity of agricultural activities and the characteristics of water consumption affect the hydrological processes of inland river basins in Central Asia. The crop water requirements and water productivity are different between the Amu Darya and Syr Darya river basins due to the different water resource development and utilization policies of Uzbekistan and Kazakhstan, which have resulted in more severe agricultural water consumption of the Amu Darya delta than the Syr Darya delta, and the differences in the surface runoff are injected into the Aral Sea. To reveal the difference in water resource dissipation, water productivity, and its influencing factors between the two basins, this study selected the irrigation areas of Amu Darya delta (IAAD) and Syr Darya delta (IASD) as typical examples; the actual evapotranspiration (ETa) was retrieved by using the modified surface energy balance algorithm for land model (SEBAL) based on high spatial resolution Landsat images from 2000 to 2020. Land use and cover change (LUCC) and streamflow data were obtained to analyze the reasons for the spatio-temporal heterogeneity of regional ETa. The water productivity of typical crops in two irrigation areas was compared and combined with statistical data. The results indicate that: (1) the ETa simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method and ground-measured data well, with all the correlation coefficients higher than 0.7. (2) In IAAD, the average ETa was 1150 mm, and the ETa had shown a decreasing trend; for the IASD, the average ETa was 800 mm. The ETa showed an increasing trend with low stability due to a large amount of developable cultivated land. The change of cultivated land dominated the spatio-temporal characteristics of ETa in the two irrigation areas (3). Combined with high spatial resolution ETa inversion results, the water productivity of cotton and rice in IAAD was significantly lower than in IASD, and wheat was not significantly different, but all were far lower than the international average. This study can provide useful information for agricultural water management in the Aral Sea region.


2020 ◽  
Author(s):  
Thomas Kelly ◽  
Timothy Foster ◽  
David Schultz

&lt;p&gt;Feeding the planet sustainably requires a substantial increase in agricultural water productivity. Water managers and policymakers often view digital technologies and big data as key solutions&amp;#160;for helping farmers to grow more food while reducing pressure on limited freshwater resources. Soil moisture probes, for example, could be used to improve the timing and efficiency of farmers&amp;#8217; irrigation management decisions. However, current adoption rates are low with most farmers, relying instead on the visual appearance of the crop or the feel of the soil to schedule irrigation decisions. These methods have potentially large uncertainties, which may lead farmers to schedule their irrigation sub-optimally. Despite the possible impact on water use and profits, little research to date has evaluated the effects of imperfect soil moisture information, and hence the value proposition to farmers and policy makers of investing in better information.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;In this study we investigate the effect of soil moisture uncertainty on irrigation water use and farm profits. We focus our analysis on a case study of irrigated maize production in Nebraska, USA. Nebraska has the second largest number of irrigated acres by state in the United States, with almost all that water being pumped up from the High Plains Aquifer (HPA). The HPA has seen large decreases in groundwater storage over recent decades, resulting in mounting pressure for more efficient irrigation practices. Using a crop-water model (AquaCrop-OS) in combination with a particle swarm optimisation algorithm, we define an optimal irrigation schedule - represented by a set of soil moisture thresholds - that maximise average profits over a 30-year historic weather period. Under this perfect-information strategy, we assess the impact on profits and water use of adding random errors to the water-flux and soil-texture inputs to the model. These random errors result in a divergence between the true water content and the farmer&amp;#8217;s perception - potentially leading to irrigation being triggered too early or too late when compared with perfect information.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Our results show that increasing levels of uncertainty lead to decreasing water-use efficiency and profits. However, we also find that the effect of increasing water-flux and soil-texture error is not linear, and that there is diminishing returns to further reductions in uncertainty below a standard error of 15%. In contrast, reductions in water-use efficiency and profits due to sub-optimal selection of irrigation management strategies are much larger. This implies that improving the quality of irrigation scheduling could have more impact on agricultural water productivity than solely improving the accuracy of soil-water information. Our findings highlight the need for further research to evaluate different methods of irrigation scheduling by using models and optimisation techniques to develop irrigation strategies that incorporate information uncertainty.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document