Spatio-temporal dynamics on the distribution, extent, and net primary productivity of potential grassland in response to climate changes in China

2013 ◽  
Vol 35 (4) ◽  
pp. 409 ◽  
Author(s):  
Huilong Lin ◽  
Xuelu Wang ◽  
Yingjun Zhang ◽  
Tiangang Liang ◽  
Qisheng Feng ◽  
...  

Net primary productivity (NPP) of grassland is one of the key components in measuring the carrying capacity of livestock. Not only are grassland researchers concerned with the performance of NPP simulation models under current climate conditions, they also need to understand the behaviour of NPP–climate models under projected climatic changes. One of the goals of this study was to evaluate the three NPP–climate models: the Miami Model, the Schuur Model, and the Classification Indices-based Model. Results indicated that the Classification Indices-based Model was the most effective model at estimating large-scale grassland NPP. Both the Integrated Orderly Classification System of Grassland and the Classification Indices-based Model were then applied to analyse the succession of grassland biomes and to measure the change in total NPP (TNPP) of grassland biomes from the recent past (1950–2000) to a future scenario (2001–2050) in a geographic information system environment. Results of the simulations indicate that, under recent-past climatic conditions, the major biomes of China’s grassland are the tundra and alpine steppe, and steppe, and these would be converted into steppe and semi-desert grassland in the future scenario; the potential grassland TNPP in China was projected to be 0.72 PgC under recent-past climatic conditions, and would be 0.83 Pg C under the future climatic scenario. The ‘safe’ carrying capacity of livestock that best integrates a wide range of factors, such as grassland classes, climatic variability, and animal nutrition, is discussed as unresolved. Further research and development is needed to identify the regional trends for the ‘safe’ carrying capacity of livestock to maintain sustainable resource condition and reduce the risk of resource degradation. This important task remains a challenge for all grassland scientists and practitioners.

2011 ◽  
Vol 11 (9) ◽  
pp. 2463-2468 ◽  
Author(s):  
Y. Tramblay ◽  
L. Neppel ◽  
J. Carreau

Abstract. In Mediterranean regions, climate studies indicate for the future a possible increase in the extreme rainfall events occurrence and intensity. To evaluate the future changes in the extreme event distribution, there is a need to provide non-stationary models taking into account the non-stationarity of climate. In this study, several climatic covariates are tested in a non-stationary peaks-over-threshold modeling approach for heavy rainfall events in Southern France. Results indicate that the introduction of climatic covariates could improve the statistical modeling of extreme events. In the case study, the frequency of southern synoptic circulation patterns is found to improve the occurrence process of extreme events modeled via a Poisson distribution, whereas for the magnitude of the events, the air temperature and sea level pressure appear as valid covariates for the Generalized Pareto distribution scale parameter. Covariates describing the humidity fluxes at monthly and seasonal time scales also provide significant model improvements for the occurrence and the magnitude of heavy rainfall events. With such models including climatic covariates, it becomes possible to asses the risk of extreme events given certain climatic conditions at monthly or seasonal timescales. The future changes in the heavy rainfall distribution can also be evaluated using covariates computed by climate models.


Author(s):  
Clayton Marlow ◽  
Lynn Irby ◽  
Jack Norland

This project was designed to determine the optimum population size for bison in the Theodore Roosevelt National Park (TRNP) by fulfilling the following objectives: 1. Delineate primary and secondary areas of bison use. 2. Determine net primary productivity for major range sites within primary and secondary use areas. 3. Determine the general seasonal food habits of bison in TRNP. 4. Determine range trends under present population density of bison and the maximum carrying capacity of primary use areas. 5. Integrate range trend and carrying capacity estimates with management priorities for bison on the TRNP.


Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 72 ◽  
Author(s):  
Abhishek Gaur ◽  
Michael Lacasse ◽  
Marianne Armstrong

Buildings and homes in Canada will be exposed to unprecedented climatic conditions in the future as a consequence of global climate change. To improve the climate resiliency of existing and new buildings, it is important to evaluate their performance over current and projected future climates. Hygrothermal and whole building simulation models, which are important tools for assessing performance, require continuous climate records at high temporal frequencies of a wide range of climate variables for input into the kinds of models that relate to solar radiation, cloud-cover, wind, humidity, rainfall, temperature, and snow-cover. In this study, climate data that can be used to assess the performance of building envelopes under current and projected future climates, concurrent with 2 °C and 3.5 °C increases in global temperatures, are generated for 11 major Canadian cities. The datasets capture the internal variability of the climate as they are comprised of 15 realizations of the future climate generated by dynamically downscaling future projections from the CanESM2 global climate model and thereafter bias-corrected with reference to observations. An assessment of the bias-corrected projections suggests, as a consequence of global warming, future increases in the temperatures and precipitation, and decreases in the snow-cover and wind-speed for all cities.


Author(s):  
Axel Kleidon

The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface–atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would enhance the overall free energy generation and, thereby ‘empower’ the future of the planet.


2019 ◽  
Vol 11 (15) ◽  
pp. 4176 ◽  
Author(s):  
Qing Huang ◽  
Weimin Ju ◽  
Fangyi Zhang ◽  
Qian Zhang

Net primary productivity (NPP) is the key component of the terrestrial carbon cycle, and terrestrial NPP trends under increasing CO2 and climate change in the past and future are of great significance in the study of the global carbon budget. Here, the LPJ-DGVM was employed to simulate the magnitude and pattern of China’s terrestrial NPP using long-term series data to understand the response of terrestrial NPP to increasing CO2 concentration and climate change. The results showed that total NPP of China’s terrestrial ecosystem increased from 2.8 to 3.6 Pg C yr−1 over the period of 1961–2016, with an annual average of 3.1 Pg C yr−1. The average NPP showed a gradient decrease from the southeast to northwest. Southwest China and Northwest China, comprising mostly arid and semi-arid regions, exhibited the largest increase rate in total NPP among the six geographical regions of China. Additionally, large interannual variability around the NPP trends was presented, and NPP anomalies in China’s terrestrial ecosystem are strongly associated with the El Niño-Southern Oscillation (ENSO). Southwest China made the largest contribution to the interannual variability of national total NPP. The total NPP of China’s terrestrial ecosystem continuously increased with the concurrent increase in the CO2 concentration and climate change under different scenarios in the future. During the period from 2091 to 2100, the average total NPP under the A2 and RCP85 scenarios would reach 4.9 and 5.1 Pg C yr−1 respectively, higher than 4.2 and 3.9 Pg C yr−1 under the B1 and RCP45 scenarios. Forests, especially temperate forests, make the largest contribution to the future increase in NPP. The increase in CO2 concentration would play a dominant role in driving further NPP increase in China’s terrestrial ecosystems, and climate change may slightly attenuate the fertilization effect of CO2 on NPP.


Author(s):  
S. K. Goroshi ◽  
R. P. Singh ◽  
R. Pradhan ◽  
J. S. Parihar

Polar orbiting satellites (MODIS and SPOT) have been commonly used to measure terrestrial Net Primary Productivity (NPP) at regional/global scale. Charge Coupled Device (CCD) instrument on geostationary INSAT-3A platform provides a unique opportunity for continuous monitoring of ecosystem pattern and process study. An <i>improved</i> Carnegie-Ames-Stanford Approach (<i>i</i>CASA) model is one of the most expedient and precise ecosystem models to estimate terrestrial NPP. In this paper, an assessment of terrestrial NPP over India was carried out using the iCASA ecosystem model based on the INSAT CCD derived Normalized Difference Vegetation Index (NDVI) with multisource meteorological data for the year 2009. NPP estimated from the INSAT CCD followed the characteristic growth profile of most of the vegetation types in the country. NPP attained maximum during August and September, while minimum in April. Annual NPP for different vegetation types varied from 1104.55 gC m<sup>&minus;2</sup> year<sup>&minus;1</sup> (evergreen broadleaf forest) to 231.9 gC m<sup>&minus;2</sup> year<sup>&minus;1</sup> (grassland) with an average NPP of 590 gC m<sup>&minus;2</sup> year<sup>&minus;1</sup>. We estimated 1.9 PgC of net carbon fixation over Indian landmass in 2009. Biome level comparison between INSAT derived NPP and MODIS NPP indicated a good agreement with the Willmott’s index of agreement (d) ranging from 0.61 (Mixed forest) to 0.99 (Open Shrubland). Our findings are consistent with the earlier NPP studies in India and indicate that INSAT derived NPP has the capability to detect spatial and temporal variability of terrestrial NPP over a wide range of terrestrial ecosystems in India. Thus INSAT-3A data can be used as one of the potential satellite data source for accurate biome level carbon estimation in India.


Author(s):  
Shahab Doulabian ◽  
Saeed Golian ◽  
Amirhossein Shadmehri Toosi ◽  
Conor Murphy

Abstract Climate change has caused many changes in hydrologic processes and climatic conditions globally, while extreme events are likely to occur more frequently at a global scale with continued warming. Given the importance of general circulation models (GCMs) as an essential tool for climate studies at global/regional scales, together with the wide range of GCMs available, selecting appropriate models is of great importance. In this study, six synoptic weather stations were selected as representative of different climatic zones over Iran. Utilizing monthly data for 20 years (1981–2000), the outputs of 25 GCMs for surface air temperature (SAT) and precipitation were evaluated for the historical period. The root-mean-square error and skill score were chosen to evaluate the performance of GCMs in capturing observed seasonal climate. Finally, the outputs of selected GCMs for the three Representative Concentration Pathways emission scenarios (RCPs), namely RCP2.6, RCP4.5, and RCP8.5, were downscaled using the change factor method for each station for the period 2046–2065. Results indicate that SAT in all months is likely to increase for each region, while for precipitation, large uncertainties emerge, despite the selection of climate models that best capture the observed seasonal cycle. These results highlight the importance of selecting a representative ensemble of GCMs for assessing future hydro-climatic changes for Iran.


Sign in / Sign up

Export Citation Format

Share Document