scholarly journals Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios

Author(s):  
Shahab Doulabian ◽  
Saeed Golian ◽  
Amirhossein Shadmehri Toosi ◽  
Conor Murphy

Abstract Climate change has caused many changes in hydrologic processes and climatic conditions globally, while extreme events are likely to occur more frequently at a global scale with continued warming. Given the importance of general circulation models (GCMs) as an essential tool for climate studies at global/regional scales, together with the wide range of GCMs available, selecting appropriate models is of great importance. In this study, six synoptic weather stations were selected as representative of different climatic zones over Iran. Utilizing monthly data for 20 years (1981–2000), the outputs of 25 GCMs for surface air temperature (SAT) and precipitation were evaluated for the historical period. The root-mean-square error and skill score were chosen to evaluate the performance of GCMs in capturing observed seasonal climate. Finally, the outputs of selected GCMs for the three Representative Concentration Pathways emission scenarios (RCPs), namely RCP2.6, RCP4.5, and RCP8.5, were downscaled using the change factor method for each station for the period 2046–2065. Results indicate that SAT in all months is likely to increase for each region, while for precipitation, large uncertainties emerge, despite the selection of climate models that best capture the observed seasonal cycle. These results highlight the importance of selecting a representative ensemble of GCMs for assessing future hydro-climatic changes for Iran.

2015 ◽  
Vol 7 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Dmitry Basharin ◽  
Alexander Polonsky ◽  
Gintautas Stankūnavičius

An assessment of the plausible climate change in precipitation and surface air temperature (SAT) over the European region by the end of the 21st century is provided. The assessment is based on the results of output of the ocean–atmosphere models participating in the Coupled Model Intercomparison Project, phase 5 (CMIP5). Six climate models that best reproduce the historical behaviour of SAT over greater Europe were selected from the CMIP5 project using a performance-based selection method of CMIP5 general circulation models for further assessments. The analysis of historical simulations within the scope of the CMIP5 project reveals that six models (namely, CNRM-CM5, HadGEM2ES, GFDL-CM3, CanESM2, MIROC5 and MPI-ESM-LR) sufficiently reproduce historical tendencies and natural variability over the region of interest. The climate change in SAT and precipitation by the end of the 21st century (2070–2099) was examined within the scope of RCP4.5 and RCP8.5 scenarios for these selected models. Typical regional warming due to RCP4.5 (RCP8.5) scenario is assessed as 3–4.5 °C (as 4–8 °C) in summer and winter, while a significant reduction of precipitation (typically 20–40%) is obtained only in summer.


2020 ◽  
Vol 21 (4) ◽  
pp. 845-863 ◽  
Author(s):  
Xiaoli Yang ◽  
Xiaohan Yu ◽  
Yuqian Wang ◽  
Xiaogang He ◽  
Ming Pan ◽  
...  

AbstractA multimodel ensemble of general circulation models (GCM) is a popular approach to assess hydrological impacts of climate change at local, regional, and global scales. The traditional multimodel ensemble approach has not considered different uncertainties across GCMs, which can be evaluated from the comparisons of simulations against observations. This study developed a comprehensive index to generate an optimal ensemble for two main climate fields (precipitation and temperature) for the studies of hydrological impacts of climate change over China. The index is established on the skill score of each bias-corrected model and different multimodel combinations using the outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Results show that the optimal ensemble of the nine selected models accurately captures the characteristics of spatial–temporal variabilities of precipitation and temperature over China. We discussed the uncertainty of subset ensembles of ranking models and optimal ensemble based on historical performance. We found that the optimal subset ensemble of nine models has relative smaller uncertainties compared with other subsets. Our proposed framework to postprocess the multimodel ensemble data has a wide range of applications for climate change assessment and impact studies.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Kleoniki Demertzi ◽  
Dimitris Papadimos ◽  
Vassilis Aschonitis ◽  
Dimitris Papamichail

This study proposes a simplistic model for assessing the hydroclimatic vulnerability of lakes/reservoirs (LRs) that preserve their steady-state conditions based on regulated superficial discharge (Qd) out of the LR drainage basin. The model is a modification of the Bracht-Flyr et al. method that was initially proposed for natural lakes in closed basins with no superficial discharge outside the basin (Qd = 0) and under water-limited environmental conditions {mean annual ratio of potential/reference evapotranspiration (ETo) versus rainfall (P) greater than 1}. In the proposed modified approach, an additional Qd function is included. The modified model is applied using as a case study the Oreastiada Lake, which is located inside the Kastoria basin in Greece. Six years of observed data of P, ETo, Qd, and lake topography were used to calibrate the modified model based on the current conditions. The calibrated model was also used to assess the future lake conditions based on the future climatic projections (mean conditions of 2061-2080) derived by 19 general circulation models (GCMs) for three cases of climate change (three cases of Representative Concentration Pathways: RCP2.6, RCP4.5 and RCP8.5). The modified method can be used as a diagnostic tool in water-limited environments for analyzing the superficial discharge changes of LRs under different climatic conditions and to support the design of new management strategies for mitigating the impact of climate change on (a) flooding conditions, (b) hydroelectric production, (c) irrigation/industrial/domestic use and (d) minimum ecological flows to downstream rivers.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2219 ◽  
Author(s):  
Kamruzzaman ◽  
Jang ◽  
Cho ◽  
Hwang

: The impacts of climate change on precipitation and drought characteristics over Bangladesh were examined by using the daily precipitation outputs from 29 bias-corrected general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. A precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was applied to quantify the characteristics of drought events in terms of the severity and duration. The changes in drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), and end of this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in regard to forecasting the occurrence of future extreme droughts. Overall, the findings showed that the annual precipitation will increase in the 21st century over Bangladesh; the increasing rate was comparatively higher under the RCP8.5 scenario. The highest increase in rainfall is expected to happen over the drought-prone northern region. The general trends of drought frequency, duration, and intensity are likely to decrease in the 21st century over Bangladesh under both RCP scenarios, except for the maximum drought intensity during the beginning of the century, which is projected to increase over the country. The extreme and medium-term drought events did not show any significant changes in the future under both scenarios except for the medium-term droughts, which decreased by 55% compared to the base period during the 2070s under RCP8.5. However, extreme drought days will likely increase in most of the cropping seasons for the different future periods under both scenarios. The spatial distribution of changes in drought characteristics indicates that the drought-vulnerable areas are expected to shift from the northwestern region to the central and the southern region in the future under both scenarios due to the effects of climate change.


Author(s):  
Peter A Stott ◽  
Chris E Forest

Two different approaches are described for constraining climate predictions based on observations of past climate change. The first uses large ensembles of simulations from computationally efficient models and the second uses small ensembles from state-of-the-art coupled ocean–atmosphere general circulation models. Each approach is described and the advantages of each are discussed. When compared, the two approaches are shown to give consistent ranges for future temperature changes. The consistency of these results, when obtained using independent techniques, demonstrates that past observed climate changes provide robust constraints on probable future climate changes. Such probabilistic predictions are useful for communities seeking to adapt to future change as well as providing important information for devising strategies for mitigating climate change.


2005 ◽  
Vol 18 (13) ◽  
pp. 2172-2193 ◽  
Author(s):  
Haijun Hu ◽  
Robert J. Oglesby ◽  
Susan Marshall

Abstract General circulation models (GCMs) designed for projecting climatic change have exhibited a wide range of sensitivity. Therefore, projected surface warming with increasing CO2 varies considerably depending on which model is used. Despite notable advances in computing power and modeling techniques that have occurred over the past decade, uncertainties of model sensitivity have not been reduced accordingly. The sensitivity issue is investigated by examining two GCMs of very different modeling techniques and sensitivity, with attention focused on how moisture processes are treated in these models, how moisture simulations are affected by these processes, and how well these simulations compare to the observed and analyzed moisture field. Both GCMs predict increases of atmospheric moisture with doubled CO2, but the increment predicted by one model is substantially higher (approximately twice) than that predicted by the other. This same difference is seen in responses of the boundary layer diffusive moistening rate. Calculations with a radiative–convective model indicate that the differences in predicted equilibrium atmospheric moisture, including both column amount and vertical distribution, have contributed to the largest differences in model sensitivity between the two models. We argue that in order for climate models to be credible for prediction purposes, they must possess credible skills of simulating surface and boundary layer processes, which likely holds the key to overall moisture performance, its response to external forcing, and in turn to model sensitivity.


2021 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Daniele Peano ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Tomas Lovato ◽  
...  

Abstract. The recent advancements in climate modelling partially build on the improvement of horizontal resolution in different components of the simulating system. A higher resolution is expected to provide a better representation of the climate variability, and in this work we are particularly interested in the potential improvements in representing extreme events of high temperature and precipitation. The two versions of the CMCC-CM2 model used here, adopt the highest horizontal resolutions available within the last family of the global coupled climate models de¬veloped at CMCC to participate in the CMIP6 effort. The main aim of this study is to document the ability of the CMCC-CM2 models in representing the spatial distribution of extreme events of temperature and precipitation, under the historical period, comparing model results to observations (ERA5 Reanalysis and CHIRPS observations). For a more detailed evaluation we investigate both 6 hourly and daily time series for the definition of the extreme conditions. In terms of mean climate, the two models are able to realistically reproduce the main patterns of temperature and precipitation. The very-high resolution version (¼ degree horizontal resolution) of the atmospheric model provides better results than the high resolution one (one degree), not only in terms of means but also in terms of extreme events of temperature defined at daily and 6-hourly frequency. This is also the case of average precipitation. On the other hand the extreme precipitation is not improved by the adoption of a higher horizontal resolution.


Author(s):  
Mohammad Kamruzzaman ◽  
Min-Won Jang ◽  
Jaepil Cho ◽  
Syewoon Hwang

The impacts of climate change on precipitation and drought characteristics over Bangladesh were examined by using the daily precipitation outputs from 29 bias-corrected general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. A precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was applied to quantify the characteristics of drought events in terms of the severity and duration. The changes in drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), and end of this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in regard to forecasting the occurrence of future extreme droughts. Overall, the findings showed that the annual precipitation will increase in the 21st century over Bangladesh; the increasing rate was comparatively higher under the RCP8.5 scenario. The highest increase of rainfall is expected to happen over the drought-prone northern region. The general trends of drought frequency, duration, and intensity are likely to decrease in the 21st century over Bangladesh under both RCP scenarios, except for the maximum drought intensity during the beginning of the century, which is projected to increase over the country. The extreme and medium-term drought events did not show any significant changes in the future under both scenarios except for the medium-term droughts, which decreased by 55% compared to the base period during the 2070s under RCP8.5. However, extreme drought days will likely increase in most of the cropping seasons for the different future periods under both scenarios. The spatial distribution of changes in drought characteristics indicates that the drought-vulnerable areas are expected to shift from the northwestern region to the central and the southern region in the future under both scenarios due to the effects of climate change.


2008 ◽  
Vol 43 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Raquel Ghini ◽  
Emília Hamada ◽  
Mário José Pedro Júnior ◽  
José Antonio Marengo ◽  
Renata Ribeiro do Valle Gonçalves

The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.


2019 ◽  
Vol 11 (4) ◽  
pp. 1811-1828
Author(s):  
Armin Ahmadi ◽  
Amirhosein Aghakhani Afshar ◽  
Vahid Nourani ◽  
Mohsen Pourreza-Bilondi ◽  
A. A. Besalatpour

Abstract The river situation in a dry or semi-dry area is extremely affected by climate change and precipitation patterns. In this study, the impact of climate alteration on runoff in Kashafrood River Basin (KRB) in Iran was investigated using the Soil and Water Assessment Tool (SWAT) in historical and three future period times. The runoff was studied by MIROC-ESM and GFDL-ESM2G models as the outputs of general circulation models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP8.5). The DiffeRential Evolution Adaptive Metropolis (DREAM-ZS) was used to calibrate the hydrological model parameters in different sub-basins. Using DREAM-ZS algorithm, realistic values were obtained for the parameters related to runoff simulation in the SWAT model. In this area, results show that runoff in GFDL-ESM2G in both RCPs (2.6 and 8.5) in comparing future periods with the historical period is increased about 232–383% and in MIROC-ESM tends to increase around 87–292%. Furthermore, GFDL-ESM2G compared to MIROC-ESM in RCP2.6 (RCP8.5) in near, intermediate, and far future periods shows that the value of runoff increases 59.6% (23.0%), 100.2% (35.1%), and 42.5% (65.3%), respectively.


Sign in / Sign up

Export Citation Format

Share Document